PCA-based Fault Detection for 2D Multivariate Process Data

Fault detection in a simple process using PCA and Kernel Density Estimation
ダウンロード: 679
更新 2018/2/7

ライセンスの表示

% PCA-based Fault Detection
%
% Inputs: z0 [N x 2] = training data
% z1 [N x 2] = test data
% where: N = number of samples
%
% This code visualizes how PCA can account
% for multivariate data in fault detection.
% It also uses MATLAB's ksdensity for
% estimating the data PDF, so as to compute
% a T^2-based upper control limit.
%
% simpledata.mat has sample temperature [K]
% and concentration [mol/L] data from
% the contents of a simulated CSTR.
%
% The output are plots of the raw data,
% normalized data, and PCA projected data.
% Also, rings representing the T^2-based
% upper control limits at different user-
% defined confidence levels are plotted.
%
% You can edit confidence limits at Line 77.
%
% This code is intended for educational purposes.
%
% Load simpledata.mat and run the following:
% >> pcabased_fault_detection(train,test)

引用

Karl Ezra Pilario (2025). PCA-based Fault Detection for 2D Multivariate Process Data (https://www.mathworks.com/matlabcentral/fileexchange/65983-pca-based-fault-detection-for-2d-multivariate-process-data), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2017a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersPredictive Maintenance Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0