Expectation Maximization Algorithm

Expectation Maximization Algorithm
ダウンロード: 2.8K
更新 2018/1/19

ライセンスの表示

This submission implements the Expectation Maximization algorithm and tests it on a simple 2D dataset.
The Expectation–Maximization (EM) algorithm is an iterative method to find maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

Github Repository:
https://github.com/rezaahmadzadeh/Expectation-Maximization

引用

Reza Ahmadzadeh (2024). Expectation Maximization Algorithm (https://www.mathworks.com/matlabcentral/fileexchange/65772-expectation-maximization-algorithm), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2016a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.2.0.0

added url for github repository

1.1.0.0

Added picture

1.0.0.0