System Identification Using Least Mean Forth (LMF) and Least Mean Square (LMS) algorithm

System Identification Using Least Mean Forth (LMF) and Least Mean Square (LMS) algorithm
ダウンロード: 506
更新 2018/2/22

ライセンスの表示

In this simulation least mean square (LMS) and least mean forth (LMF) algorithms are compared in non-Gaussian noisy environment for system identification task. Is it well known that the LMF algorithm outperforms the LMS algorithm in non-Gaussian environment, the same results can be seen in this implementation. Additionally a customized function for additive white uniform noise is also programmed.

引用

Shujaat Khan (2024). System Identification Using Least Mean Forth (LMF) and Least Mean Square (LMS) algorithm (https://www.mathworks.com/matlabcentral/fileexchange/63596-system-identification-using-least-mean-forth-lmf-and-least-mean-square-lms-algorithm), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2011a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersStair Plots についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Plant_Identification_LMS_LMF/

Plant_Identification_LMS_LMF/html/

バージョン 公開済み リリース ノート
1.2.0.0

- Example

1.1.0.0

- Monte Carlo simulation setup

1.0.0.0

- Signal generator is generalized
- results on arbitrary system are shown