SVM for nonlinear classification

バージョン 1.0.0.0 (91.8 KB) 作成者: Bhartendu
SVM on (Non-linearly Seperable Data) using polynomial Kernel
ダウンロード: 2.2K
更新 2017/5/19

ライセンスの表示

Refer: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods by Nello Cristianini and John Shawe-Taylor]
The training algorithm only depend on the data through dot products in H, i.e. on functions of the form Φ(x_i)·Φ(x_j). Now if there were a “kernel function” K such that
K(x_i,x_j) = Φ(x_i)·Φ(x_j),
we would only need to use K in the training algorithm, and would never need to explicitly even know what Φ is. One example is radial basis functions (RBF) or gaussian kernels where, H is infinite dimensional, so it would not be very easy to work with Φ explicitly.
Training the model requires the choice of:
• the kernel function, that determines the shape of the decision surface
• parameters in the kernel function (eg: for gaussian kernel:variance of the Gaussian, for polynomial kernel: degree of the polynomial)
• the regularization parameter λ.

引用

Bhartendu (2024). SVM for nonlinear classification (https://www.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2016a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersPolynomials についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0