solving ODE using numerical methods

バージョン 1.0.0.1 (1.82 KB) 作成者: N Narayan rao
program to solve ODE using different numerical methods
ダウンロード: 315
更新 2019/10/16

ライセンスの表示

A most general form of an ordinary differential equation (ode) is given by f( x, y, y', . . ., y(m) ) = 0
where x is the independent variable and y is a function of x. y', y'' . . . y(m) are respectively, first, second and mth derivatives of y with respect to x. ref: https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/intro.html
example :
program to solve 1st Order differential Equation using different numerical methods
comparing the results with ODE45 and to find max error for a user defined step size " h "
enter the function in form of @(x,y): @(x,y)cos(x)-log(y)
enter initial "x" value : 1
enter final "x" value : 3
enter initial "y" value : 1
enter "h" value : 0.1
maximum error ode45 vs Euler= 0.030403 with step size h= 0.1
maximum error ode45 vs RK-4= 1.3012e-06 with step size h= 0.1
maximum error ode45 vs Heuns(Rk-2)= 0.00095811 with step size h= 0.1
maximum error ode45 vs Midpoint= 0.0009912 with step size h= 0.1
maximum error ode45 vs Backward Eulers= 0.044459 with step size h= 0.1

引用

N Narayan rao (2024). solving ODE using numerical methods (https://www.mathworks.com/matlabcentral/fileexchange/60517-solving-ode-using-numerical-methods), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2013a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

バージョン 公開済み リリース ノート
1.0.0.1

nil

1.0.0.0

fig
none