solving ODE using numerical methods
A most general form of an ordinary differential equation (ode) is given by f( x, y, y', . . ., y(m) ) = 0
where x is the independent variable and y is a function of x. y', y'' . . . y(m) are respectively, first, second and mth derivatives of y with respect to x. ref: https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/intro.html
example :
program to solve 1st Order differential Equation using different numerical methods
comparing the results with ODE45 and to find max error for a user defined step size " h "
enter the function in form of @(x,y): @(x,y)cos(x)-log(y)
enter initial "x" value : 1
enter final "x" value : 3
enter initial "y" value : 1
enter "h" value : 0.1
maximum error ode45 vs Euler= 0.030403 with step size h= 0.1
maximum error ode45 vs RK-4= 1.3012e-06 with step size h= 0.1
maximum error ode45 vs Heuns(Rk-2)= 0.00095811 with step size h= 0.1
maximum error ode45 vs Midpoint= 0.0009912 with step size h= 0.1
maximum error ode45 vs Backward Eulers= 0.044459 with step size h= 0.1
引用
N Narayan rao (2024). solving ODE using numerical methods (https://www.mathworks.com/matlabcentral/fileexchange/60517-solving-ode-using-numerical-methods), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- MATLAB > Mathematics > Numerical Integration and Differential Equations > Ordinary Differential Equations >
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!