Least Mean Square (LMS)

バージョン 1.0.0.0 (1.51 KB) 作成者: Shujaat Khan
An example of least mean square algorithm to determine a linear model's parameter.
ダウンロード: 1.7K
更新 2016/11/3

ライセンスの表示

In this code, a linear equation is used to generate sample data using a slope and bias. Later a Gaussian noise is added to the desired output. The noisy output and original input is used to determine the slope and bias of the linear equation using LMS algorithm. This implementation of LMS is based on batch update rule of gradient decent algorithm in which we use the sum of error instead of sample error. You can modify this code to create sample based update rule easily.

引用

Shujaat Khan (2024). Least Mean Square (LMS) (https://www.mathworks.com/matlabcentral/fileexchange/60080-least-mean-square-lms), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2014b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersAdaptive Filters についてさらに検索
謝辞

ヒントを得たファイル: Gradient Descent Method (Least Mean Square) demonstration

ヒントを与えたファイル: Constrain Least Mean Square Algorithm

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0

Description update