Simple Heat Equation solver
バージョン 1.0.0.3 (5.51 MB) 作成者:
michio
Simple Heat Equation solver using finite difference method
Finite differences for the 2D heat equation
Implementation of a simple numerical schemes for the heat equation.
Applying the second-order centered differences to approximate the spatial derivatives,
Neumann boundary condition is employed for no-heat flux, thus please note that the grid location is staggered. Once the right hand side is obtained, the equation can be solved by the ODE suite. Here we use ode15s. Copyright 2015-2016 The MathWorks, Inc.
Problem Setup
N = 50; % Number of grid in x,y-direction
L = 4*pi; % Domain size
% Grid point
x = linspace(0,L,N);
y = linspace(0,L,N);
% Make it staggered.
x = (x(1:end-1)+x(2:end))/2;
y = (y(1:end-1)+y(2:end))/2;
[X,Y] = meshgrid(x,y);
Initial Condition
% Let's use MATLAB logo.
% A variable u0 is defined at the center of each grid cell
% thus the number of grid point is N-1.
u0(:,:) = peaks(N-1);
% Plot it
handle_surf = surf(X,Y,u0);
handle_axes = gca;
handle_axes.ZLim = [-10,10];
handle_axes.CLim = [-10,10];
title('Evolution of MATLAB Logo by Heat equation');
Simulation
dx = x(2)-x(1); % spatial grid size
alpha = 2; % coefficient
tspan = linspace(0,1,40);
[t,u] = ode15s(@(t,x)getRHS(x,alpha,dx,N),tspan,u0(:));
Visualize
Tn = length(t);
u = reshape(u,Tn,N-1,N-1);
filename = 'heat.gif';
for ii=1:Tn
Z = u(ii,:,:);
Z = squeeze(Z);
handle_surf.ZData = Z;
drawnow;
frame = getframe(gcf);
im = frame2im(frame);
[A,map] = rgb2ind(im,256);
if ii==1
imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',0.05);
else
imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',0.05);
end
end
引用
michio (2024). Simple Heat Equation solver (https://github.com/mathworks/Simple-Heat-Equation-solver), GitHub. に取得済み.
MATLAB リリースの互換性
作成:
R2016a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxカテゴリ
Help Center および MATLAB Answers で PDE Solvers についてさらに検索
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。