The Newton-Raphson algorithm requires the evaluation of two functions (the function and its derivative) per each iteration. If they are complicated expressions it will take considerable amount of effort to do hand calculations or large amount of CPU time for machine calculations. Hence it is desirable to have a method that converges
clear all
clc
tol=0.01;
x0=1;
x1=2;
x=-3:0.1:3;
y=x.^3-3*x+1;
f=@(x)x^3-3*x+1;
plot(x,y)
grid on
z =secant(f,x0,x1,tol);
引用
N Narayan rao (2025). secant(f,x0,x1,tol) (https://www.mathworks.com/matlabcentral/fileexchange/58784-secant-f-x0-x1-tol), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
作成:
R2013a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- Mathematics and Optimization > Optimization Toolbox > Systems of Nonlinear Equations > Newton-Raphson Method >
Help Center および MATLAB Answers で Newton-Raphson Method についてさらに検索
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.0.0.0 | none
|