newtonraphson(f,df,xo,tol)
Let the given equation be f(x) = 0 and the initial approximation for the root is x0. Draw a tangent to the curve y = f(x) at x0 and extend the tangent until x-axis. Then the point of intersection of the tangent and the x-axis is the next approximation for the root of f(x) = 0. Repeat the procedure with x0 = x1 until it converges.
BISECTION and REGULA-FALSI METHOD please refer previously uploaded function
f(x) =x^3-3*x+1
the above function has two roots in between -2 to -1 and in between 1 to 2.
% Newton Raphson Method comparison with BISECTION and REGULA-FALSI METHOD
%%
clear all
clc
x=-3:0.01:3;
y=x.^3-3*x+1;
plot(x,y)
grid on
%%
a=1;
b=2;
xo=2;
tol=0.01;
f=inline('x^3-3*x+1');
df=inline('3*x^2-3');
disp('Regula falsi Method')
disp('--------------------')
R=Regulafalsi(f,a,b,tol);
disp('Bisection Method')
disp('--------------------')
B=bisection(f,a,b,tol);
disp('Newton Raphson Method ')
disp('----------------------')
N=newtonraphson(f,df,xo,tol);
引用
N Narayan rao (2024). newtonraphson(f,df,xo,tol) (https://www.mathworks.com/matlabcentral/fileexchange/58749-newtonraphson-f-df-xo-tol), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- Mathematics and Optimization > Optimization Toolbox > Systems of Nonlinear Equations > Newton-Raphson Method >
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.0.0.0 | image |