Statistical Spectrum and Frequency Estimation Examples

Examples from the M. Hayes' famous book "Statistical Digital Signal Processing and Modeling".
ダウンロード: 1.8K
更新 2017/12/21

ライセンスの表示

Some important classical (non-parametric) and modern (parametric) statistical spectrum and frequency estimation algorithms are demonstrated, reproducing the examples from chapter 8 of M. Hayes book. Namely, the following Methods are exposed:
A) Non-parametric Methods.
i) The Periodogram.
ii) Barlett's Method: Periodogram Averaging.
iii) Welch's Method: Averaging Modified Periodograms.
iv) Blackman-Tukey Method: Periodogram Smoothing.
B) Parametric Methods.
i) The Autocorrelation Method.
ii) The Covariance Method.
iii) The Modified Covariance Method.
iv) The Burg Algorithm.

C) Frequency Estimation.
i) Pisarenko Harmonic Decomposition (PHD).
ii) Multiple Signal Classification (MUSIC).
iii) The Eigenvector Method.
iv) The Minimum Norm Algorithm.

引用

Ilias Konsoulas (2025). Statistical Spectrum and Frequency Estimation Examples (https://jp.mathworks.com/matlabcentral/fileexchange/57772-statistical-spectrum-and-frequency-estimation-examples), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2011b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersAI for Signals についてさらに検索
謝辞

ヒントを得たファイル: Statistical Digital Signal Processing and Modeling

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0

Corrected some x-axis inconsistencies. No all x-axis frequency variables are in units of pi.

I have updated the link to M. Hayes .m scripts necessary to run these examples.
I improved the appearance of code and figure rendering.