Demo.m shows a K-means segmentation demo
K-means clustering is one of the popular algorithms in clustering and segmentation. K-means segmentation treats each imgae pixel (with rgb values) as a feature point having a location in space. The basic K-means algorithm then arbitrarily locates, that number of cluster centers in multidimensional measurement space. Each point is then assigned to the cluster whose arbitrary mean vector is closest. The procedure continues until there is no significant change in the location of class mean vectors between successive iterations of the algorithms.
引用
Alireza (2026). K-means segmentation (https://jp.mathworks.com/matlabcentral/fileexchange/52697-k-means-segmentation), MATLAB Central File Exchange. 取得日: .
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Statistics and Machine Learning Toolbox >
- Image Processing and Computer Vision > Image Processing Toolbox > Image Segmentation and Analysis > Image Segmentation > Color Segmentation >
タグ
謝辞
ヒントを得たファイル: K-means clustering
| バージョン | 公開済み | リリース ノート | |
|---|---|---|---|
| 1.0.0.0 |
