Generalised Exponential Integral

Computes the generalised exponential integral E_a(x) for positive real parameter a and argument x
ダウンロード: 358
更新 2015/8/27

ライセンスの表示

This function computes the generalized exponential integral E_a(x) for positive real parameter a and argument x. Call it as y=genexpint(a,x) or y=genexpint(a,x,expscale). If the optional third input argument expscale is set to true, the output is exp(x)*E_a(x), which is finite for large x where exp(x) overflows and E_a(x) underflows.
The code uses a MATLAB translation of the FORTRAN function DGAMIC from the SLATEC library. DGAMIC computes the upper incomplete gamma function for negative real parameter, using the algorithm of Gautschi (ACM Trans. Math. Soft. 5(4) pp 466-481, 1979). For x>1, the Legendre continued fraction is used to calculate the function
G(1-a)=exp(x)*E_a(x). For x<=1, the generalized exponential integral is obtained from the relationship
E_a(x)=x^(a-1)*Gamma(1-a,x). (Note that the incomplete gamma function parameter 1-a can be negative, so the MATLAB function gammainc cannot be used here as it is limited to positive real parameters.)

引用

Stephen Bocquet (2025). Generalised Exponential Integral (https://www.mathworks.com/matlabcentral/fileexchange/52694-generalised-exponential-integral), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2015a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersFortran with MATLAB についてさらに検索
タグ タグを追加
謝辞

ヒントを得たファイル: benbarrowes/f2matlab

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0