ROC Curve

MATLAB function which performs a ROC curve of two-class data.
ダウンロード: 5.1K
更新 2018/12/13


This function calculates the Receiver Operating Characteristic curve, which represents the 1-specificity and sensitivity of two classes of data, (i.e., class_1 and class_2).

The function also returns all the needed quantitative parameters: threshold position, distance to the optimum point, sensitivity, specificity, accuracy, area under curve (AROC), positive and negative predicted values (PPV, NPV), false negative and positive rates (FNR, FPR), false discovery rate (FDR), false omission rate (FOR), F1 score, Matthews correlation coefficient (MCC), Informedness (BM) and Markedness; as well as the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Example of use:
class_1 = 0.5*randn(100,1);
class_2 = 0.5+0.5*randn(100,1);
roc_curve(class_1, class_2);


Víctor Martínez-Cagigal (2024). ROC Curve (, MATLAB Central File Exchange. 取得済み .

MATLAB リリースの互換性
作成: R2014a
Windows macOS Linux
Help Center および MATLAB AnswersStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート

All parameters are now printed in the CMD.


The function now outputs more parameters.

Classes are now indicated separately.

Different sizes in class_1 and class_2 are now allowed.

Fixed a bug in the output data.