Generalized Matrix Exponential

Solves Y'(t) = D(t)*Y(t) for Y(1) with Y(0) = I (identity matrix).
ダウンロード: 206
更新 2015/6/17

ライセンスの表示

The matrix exponential Y = expm(D) is the solution of the differential equation Y'(t) = D*Y(t) at t = 1, with initial condition Y(0) = I (the identity matrix). The gexpm function generalizes this for the case of a non-constant coefficient matrix D: Y'(t) = D(t)*Y(t). gexpm handles both the constant and non-constant D cases and is equivalent to expm for constant D.
An argument option allows gexpm to compute Y = expm(X)-I without the precision loss associated with the I term. This is analogous to the MATLAB expm1 function ("exponential minus 1").
The demo_gexpm script illustrates the performance of gexpm in comparison to expm and ode45.
The algorithm is based on an order-6 Pade approximation, which is outlined in the document KJohnson_2015_04_01.pdf.

引用

Kenneth Johnson (2024). Generalized Matrix Exponential (https://www.mathworks.com/matlabcentral/fileexchange/50413-generalized-matrix-exponential), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2015a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersMatrix Exponential についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.1.0.0

Revised Description
Revised Description

1.0.0.0