Node Similarity based Graph Visualization

Visualization is done with the MDS (Multidimensional Scaling) dimensionality reduction technique
ダウンロード: 660
更新 2014/8/13

ライセンスの表示

The basis of the presented methods for the visualization and clustering of graphs is a novel similarity and distance metric, and the matrix describing the similarity of the nodes in the graph. This matrix represents the type of connections between the nodes in the graph in a compact form, thus it provides a very good starting point for both the clustering and visualization algorithms. Hence visualization is done with the MDS (Multidimensional Scaling) dimensionality reduction technique obtaining the spectral decomposition of this matrix, while the partitioning is based on the results of this step generating a hierarchical representation. A detailed example is shown to justify the capability of the described algorithms for clustering and visualization of the link structure of Web sites.

The algorithm is also desribed in:
Miklos Erdelyi, Janos Abonyi, Node Similarity-based Graph Clustering and Visualization, 7th International Symposium of Hungarian Researchers on Computational Intelligence, Budapest, Hungary, 2006.11.24-2006.11.25, Magyar Fuzzy Társaság, 2006. pp. 1-12.

For more MATLAB tools please visit:
http://www.abonyilab.com/software-and-data

引用

Janos Abonyi (2024). Node Similarity based Graph Visualization (https://www.mathworks.com/matlabcentral/fileexchange/47529-node-similarity-based-graph-visualization), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R14SP1
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0