inv_det_0(A)

バージョン 1.2.0.0 (520 Bytes) 作成者: Feng Cheng Chang
Inverse and determinant of a matrix by order expansion and condensation
ダウンロード: 193
更新 2014/11/15

ライセンスの表示

The inverse and determinant of a given square matrix can be computed by applying iteration routine involved simultaneously matrix order expansion and condensation process. At the conclusion of iterations process, the expansion routine results in the inverse (iA) of the given matrix (A), and the condensation routine generates an array (p) of elements (Schur components), which gives the determinant (dA)of the given matrix.
[iA,dA,p] = inv_det_0.(A).
The routine code is very compact, and works for fairly large order matrices such as A = randn(99). The total number of multiplication/division operations is about N^3, which is need for the product of two NxN matrices.
The routine involves simple arithmatic division, and will fail if the divider becomes zeros. In such cases, we must interchange among rows and columns of the given matrix, before running the routine.

引用

Feng Cheng Chang (2025). inv_det_0(A) (https://www.mathworks.com/matlabcentral/fileexchange/47444-inv_det_0-a), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R12
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersOperating on Diagonal Matrices についてさらに検索
謝辞

ヒントを得たファイル: Update Inverse Matrix, GINV(X), Inverse and determinant of square matrix

ヒントを与えたファイル: Regla de cramer, Matrix inverse and determinant

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.2.0.0

Combine order expansion and condensation routines into a simple compact routine

1.1.0.0

Submitted files det_inv_0.m and det_0.m must be independently separated.

1.0.0.0