Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers

Each rule can represent more than one classes with different probabilities
ダウンロード: 1K
更新 2014/7/11

ライセンスの表示

The classical fuzzy classifier consists of rules each one describing one of the classes. In this paper a new fuzzy model structure is proposed where each rule can represent more than one classes with different probabilities. The obtained classifier can be considered as an extension of the quadratic Bayes classifier that utilizes mixture of models for estimating the class conditional densities. A supervised clustering algorithm has been worked out for the identification of this fuzzy model. The relevant input variables of the fuzzy classifier have been selected based on the analysis of the clusters by Fisher's interclass separability criteria. This new approach is applied to the well-known wine and Wisconsin Breast Cancer classification problems.

It is also desribed in:
J. Abonyi, F. Szeifert, Supervised fuzzy clustering for the identification of fuzzy classifiers, Pattern Recognition Letters, 24(14) 2195-2207, October 2003

For more MATLAB tools please visit:
http://www.abonyilab.com/software-and-data

引用

Janos Abonyi (2024). Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers (https://www.mathworks.com/matlabcentral/fileexchange/47203-supervised-fuzzy-clustering-for-the-identification-of-fuzzy-classifiers), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R14SP1
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersFuzzy Logic Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0