Correlation based dynamic time warping of multivariate time series

バージョン 1.0.0.0 (7.27 KB) 作成者: Janos Abonyi
Combines DTW and PCA based similarity measures.
ダウンロード: 1.3K
更新 2014/7/9

ライセンスの表示

A novel algorithm called correlation based dynamic time warping (CBDTW) wich combines DTW and PCA based similarity measures. To preserve correlation, multivariate time series are segmented and the local dissimilarity function of DTW originated from SPCA. The segments are obtained by bottom-up segmentation using special, PCA related costs. Our novel technique qualitified on two databases, the database of signature verification competition 2004 and the commonly used AUSLAN dataset. We show that CBDTW outperforms the standard SPCA and the most commonly used, Euclidean distance based multivariate DTW in case of datasets wich complex correlation structure.

The algorithm is also described in:
J. Abonyi, F. Szeifert, Supervised fuzzy clustering for the identification of fuzzy classifiers, Pattern Recognition Letters, 24(14) 2195-2207, October 2003

引用

Janos Abonyi (2024). Correlation based dynamic time warping of multivariate time series (https://www.mathworks.com/matlabcentral/fileexchange/47159-correlation-based-dynamic-time-warping-of-multivariate-time-series), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R14SP1
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersTime Series についてさらに検索
タグ タグを追加

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0