bin_classification_​toolbox.zip

A toolbox used to learn linear binary classifiers with different loss functions.
ダウンロード: 513
更新 2014/5/14

ライセンスの表示

This toolbox is used to learn linear binary classifiers through regularized risk minimization.
Specifically, it assumes a linear binary classifier y=sign(w'x+b), and the parameters are learned by minimizing the following objective function:
w*,b*=argmin 1/n sum l(y_i,w'x_i+b) + lambda/2*w'w
We use conjugate gradient descent method to solve the optimization problem.
Features:
1. The classifier can be learned using different loss functions such as square loss and logistic loss or any user defined loss.
2. The regularization parameter can be tuned through repeated k-fold cross validation or a separate validation set.
3. Regularization parameter can be tuned based on different criteria such as overall accuracy, average accuracy, average precision and area under roc curve
Note that if you want to use average precision and area under roc curve, make sure vlFeat toolbox (http://www.vlfeat.org/) is downloaded and included in the path

引用

Zach Ziheng Wang (2024). bin_classification_toolbox.zip (https://www.mathworks.com/matlabcentral/fileexchange/46614-bin_classification_toolbox-zip), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2012a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersStatistics and Machine Learning Toolbox についてさらに検索
謝辞

ヒントを与えたファイル: Truss displacement based on FEM

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.1.0.0

demo figure changed

1.0.0.0