Small size of observation and huge features happens a lot in shape/image and bioinformatics analysis. This file provides an alternative way of perform PCA analysis.
More detail about PCA please check: http://www.math.fsu.edu/~qxu/TCI.html
引用
Kim Xu (2024). Principal Component Analysis for large feature and small observation (https://www.mathworks.com/matlabcentral/fileexchange/45967-principal-component-analysis-for-large-feature-and-small-observation), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
作成:
R2009b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Help Center および MATLAB Answers で Dimensionality Reduction and Feature Extraction についてさらに検索
タグ
謝辞
ヒントを与えたファイル: EOF
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!