Model-based Value Iteration Algorithm for Deterministic Cleaning Robot

An Example for Reinforcement Learning and Dynamic Programming
ダウンロード: 1.2K
更新 2014/2/27

ライセンスの表示

Model-based value iteration Algorithm for Deterministic Cleaning Robot. This code is a very simple implementation of a value iteration algorithm, which makes it a useful start point for beginners in the field of Reinforcement learning and dynamic programming.
The deterministic cleaning-robot MDP: a cleaning robot has to collect a used can also has to recharge its batteries. the state describes the position of the robot and the action describes the direction of motion. The robot can move to the left or to the right. The first (1) and the final (6) states are the terminal states. The goal is to find an optimal policy that maximizes the return from any initial state. Here the Q-iteration (model-based value iteration DP). Reference: Algorithm 2-1, from:
@book{busoniu2010reinforcement,
title={Reinforcement learning and dynamic programming using function approximators},
author={Busoniu, Lucian and Babuska, Robert and De Schutter, Bart and Ernst, Damien},
year={2010},
publisher={CRC Press}
}

引用

Reza Ahmadzadeh (2026). Model-based Value Iteration Algorithm for Deterministic Cleaning Robot (https://jp.mathworks.com/matlabcentral/fileexchange/45692-model-based-value-iteration-algorithm-for-deterministic-cleaning-robot), MATLAB Central File Exchange. 取得日: .

MATLAB リリースの互換性
作成: R2011a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersDeep Learning Toolbox についてさらに検索
コミュニティ
バージョン 公開済み リリース ノート
1.1.0.0

the new code is commented for providing more information

1.0.0.0