Object tracking with an Iterative Extended Kalman Filter (IEKF)

Matlab implementation of Ted Broida's "Estimation of Object Motion Parameters from Noisy Images"
ダウンロード: 2.8K
更新 2015/7/15

ライセンスの表示

This is my Matlab implementation of Ted Broida's "Estimation of Object Motion
Parameters from Noisy Images." This is a very early work using Kalman Filtering to perform object tracking. The paper makes many assumptions such as the structure is known and we are given a 1D view of a 2D object, but it paved the way for future methods.
From the perspective of a new person to adaptive filtering, I believe this creates a perfect example problem to apply an IEKF because it is simple and you can concentrate on how the algorithm works. Plus the inputs to the filter have a physical meaning.

The best way to start will be by reading the .pdf file. This is the write up I did for this project and hopefully should explain how it works clearly.

Then next thing will be to simply run "CompleteSimulation.m" I tried to make the code very readable so hopefully you can just read the script.

The largest reason for submitting this to the file exchange is "f_IEKF.m" This is the function that actually implements the filter and took several days of headache to write. It isn't commented line by line, but I choose the variables to be consistent with the theory sections seen in most books. I hope it will be clear and help someone out there.

Video:
https://www.youtube.com/watch?v=5LAq0dq6baI

引用

Lucas Chavez (2026). Object tracking with an Iterative Extended Kalman Filter (IEKF) (https://jp.mathworks.com/matlabcentral/fileexchange/42156-object-tracking-with-an-iterative-extended-kalman-filter-iekf), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2011b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersAdaptive Filters についてさらに検索
謝辞

ヒントを得たファイル: Adaptive Robust Numerical Differentiation

バージョン 公開済み リリース ノート
1.0.0.0

Adding link to video on youtube that has results of code.