This is the variational Bayesian inference method for Gaussian mixture model. Unlike the EM algorithm (maximum likelihood estimation), it can automatically determine the number of the mixture components k. Please try following code for a demo:
close all; clear;
d = 2;
k = 3;
n = 2000;
[X,z] = mixGaussRnd(d,k,n);
plotClass(X,z);
m = floor(n/2);
X1 = X(:,1:m);
X2 = X(:,(m+1):end);
% VB fitting
[y1, model, L] = mixGaussVb(X1,10);
figure;
plotClass(X1,y1);
figure;
plot(L)
% Predict testing data
[y2, R] = mixGaussVbPred(model,X2);
figure;
plotClass(X2,y2);
The data set is of 3 clusters. You only need to set a number (say 10) which is larger than the intrinsic number of clusters. The algorithm will automatically find the proper k.
Detail description of the algorithm can be found in the reference.
Pattern Recognition and Machine Learning by Christopher M. Bishop (P.474)
Upon the request, I provided the prediction function for out-of-sample inference.
This function is now a part of the PRML toolbox (http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox).
引用
Mo Chen (2024). Variational Bayesian Inference for Gaussian Mixture Model (https://www.mathworks.com/matlabcentral/fileexchange/35362-variational-bayesian-inference-for-gaussian-mixture-model), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- Wireless Communications > Communications Toolbox > PHY Components > Error Detection and Correction >
タグ
謝辞
ヒントを得たファイル: EM Algorithm for Gaussian Mixture Model (EM GMM), Pattern Recognition and Machine Learning Toolbox
ヒントを与えたファイル: GMMVb_SB(X), Dirichlet Process Gaussian Mixture Model, EM Algorithm for Gaussian Mixture Model (EM GMM)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!VbGm/
バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.0.0.0 | added prediction function, greatly simplified the code |