Dynamic Programming solution to the TSP
バージョン 1.0.0.0 (3.04 KB) 作成者:
Elad Kivelevitch
This function solves the Traveling Salesman Problem (TSP) using Dynamic programming (DP).
The function is based on the paper by Held and Karp from 1962. The DP is guaranteed to provide the accurate (optimal) result to the TSP, but the time complexity of this algorithm is O(2^n n^2), which limits the use of this algorithm to 15 cities or less.
NOTE: For reasonable runtime, please do not try to calculate a tour of more than 13 cities. DP is not for large sets of cities.
引用
Elad Kivelevitch (2026). Dynamic Programming solution to the TSP (https://jp.mathworks.com/matlabcentral/fileexchange/31454-dynamic-programming-solution-to-the-tsp), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
作成:
R2008a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Statistics and Machine Learning Toolbox > Cluster Analysis and Anomaly Detection > Nearest Neighbors >
- MATLAB > Mathematics > Graph and Network Algorithms > Shortest Path > Traveling Salesman (TSP) >
- Mathematics and Optimization > Optimization Toolbox > Linear Programming and Mixed-Integer Linear Programming > Solver-Based Linear Programming >
Help Center および MATLAB Answers で Nearest Neighbors についてさらに検索
タグ
謝辞
ヒントを与えたファイル: Travelling Salesman Problem by Dynamic Programming
| バージョン | 公開済み | リリース ノート | |
|---|---|---|---|
| 1.0.0.0 |
