Affine optic flow

バージョン 1.3.0.0 (1.03 MB) 作成者: David Young
Estimates the parameters of an affine (first-order) optic flow model from two images.
ダウンロード: 6.9K
更新 2016/3/4

ライセンスの表示

An affine (or first-order) optic flow model has 6 parameters, describing image translation, dilation, rotation and shear. The class affine_flow provides methods to estimates these parameters for two frames of an image sequence.
The class implements a least-squares fit of the parameters to estimates of the spatial and temporal grey-level gradients. This is an extension of the well-known Lucas-Kanade method. The images are either sampled conventionally, on a rectilinear grid, or on a log-polar grid. In the latter case, the class may iteratively refine its estimates by moving the sampling grid to track the motion. Options to specify a region of interest and smoothing and sampling parameters are provided.
The file includes a demonstration of the class, and test images for this. The functions for smoothing images and estimating gradients may be useful independently, and log-polar sampling functions are included (and are available separately in submission 27023).

引用

David Young (2026). Affine optic flow (https://jp.mathworks.com/matlabcentral/fileexchange/27093-affine-optic-flow), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2016a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
謝辞

ヒントを得たファイル: Log-polar image sampling, Extended array indexing, Gradients with Gaussian smoothing

ヒントを与えたファイル: Muscle fascicle tracking - Ultrasound

バージョン 公開済み リリース ノート
1.3.0.0

Fixed bug which caused error when sample step was greater than 1.

Minor corrections to comments.

Changed order of arguments in gsmooth2 and gradients_xyt.
MathWorks update: Added Live Script.

1.2.0.0

Changed from a function to a class, for more efficient application to image sequences. (Argument checking etc. can be moved outside a loop, and some intermediate computations can be saved for later use.)

1.1.0.0

Fixed bug in use of ROI, allowed ROI in conjunction with log-polar sampling, simplified gradient computation by using exindex, minor changes to demo.

1.0.0.0