MyFisher

the definitive function for the Fisher's exact and conditional test for any RxC matrix
ダウンロード: 1.1K
更新 2021/11/8

Fisher's Exact Probability Test for a RxC matrix.
Fisher's exact test permits calculation of precise probabilities in situation where, as a consequence of small cell frequencies, the much more rapid normal approximation and chi-square calculations are liable to be inaccurate. The Fisher's exact test involves the computations of several factorials to obtain the probability of the observed and each of the more extreme tables. Factorials growth quickly, so it's necessary use logarithms of factorials. This computations is very easy in Matlab because: x!=gamma(x+1) and log(x!)=gammaln(x+1). Moreover, when the matrix has many Rows and Columns, the computation of all the set of possible matrices is very time expensive. This function uses this strategy:
if the input is a 2x2, 2x3, 2x4 or 3x3 matrix it uses (or download) ad hoc, previously written by me, function;

else it uses a Monte Carlo approach. Finally, this function uses the Peter J. Acklam rldecode function, and so I want to acknowledge him.

Created by Giuseppe Cardillo
giuseppe.cardillo-edta@poste.it

To cite this file, this would be an appropriate format: Cardillo G. (2010) MyFisher: the definitive function for the Fisher's exact and conditional test for any RxC matrix http://www.mathworks.com/matlabcentral/fileexchange/26883

引用

Giuseppe Cardillo (2024). MyFisher (https://github.com/dnafinder/myfisher), GitHub. に取得済み.

MATLAB リリースの互換性
作成: R2014b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersHypothesis Tests についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

GitHub の既定のブランチを使用するバージョンはダウンロードできません

バージョン 公開済み リリース ノート
2.0.0.0

inputparser; table implementation; github link

1.1.0.0

change in help section for citation

1.0.0.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。