- Subtracting the mean of the data from the original dataset
- Finding the covariance matrix of the dataset
- Finding the eigenvector(s) associated with the greatest eigenvalue(s)
- Projecting the original dataset on the eigenvector(s)
- Use only a certain number of the eigenvector(s)
- Do back-project to the original basis vectors
Implementation of
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
"A tutorial on Principial Component Analysis"
引用
Andreas (2024). PCA (Principial Component Analysis) (https://www.mathworks.com/matlabcentral/fileexchange/26793-pca-principial-component-analysis), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
タグ
謝辞
ヒントを与えたファイル: EOF
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!