- Subtracting the mean of the data from the original dataset
- Finding the covariance matrix of the dataset
- Finding the eigenvector(s) associated with the greatest eigenvalue(s)
- Projecting the original dataset on the eigenvector(s)
- Use only a certain number of the eigenvector(s)
- Do back-project to the original basis vectors
Implementation of
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
"A tutorial on Principial Component Analysis"
引用
Andreas (2026). PCA (Principial Component Analysis) (https://jp.mathworks.com/matlabcentral/fileexchange/26793-pca-principial-component-analysis), MATLAB Central File Exchange. 取得日: .
MATLAB リリースの互換性
作成:
R2007b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Help Center および MATLAB Answers で Dimensionality Reduction and Feature Extraction についてさらに検索
タグ
謝辞
ヒントを与えたファイル: EOF
