Simpson's rule for numerical integration

バージョン 1.5.0.0 (2.48 KB) 作成者: Damien Garcia
The Simpson's rule uses parabolic arcs instead of the straight lines used in the trapezoidal rule
ダウンロード: 10.6K
更新 2013/5/22

ライセンスの表示

Z = SIMPS(Y) computes an approximation of the integral of Y via the Simpson's method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.

Z = SIMPS(X,Y) computes the integral of Y with respect to X using the Simpson's rule.

Z = SIMPS(X,Y,DIM) or SIMPS(Y,DIM) integrates across dimension DIM

SIMPS uses the same syntax as TRAPZ.

Example:
-------
% The integral of sin(x) on [0,pi] is 2
% Let us compare TRAPZ and SIMPS
x = linspace(0,pi,6);
y = sin(x);
trapz(x,y) % returns 1.9338
simps(x,y) % returns 2.0071

引用

Damien Garcia (2024). Simpson's rule for numerical integration (https://www.mathworks.com/matlabcentral/fileexchange/25754-simpson-s-rule-for-numerical-integration), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2010a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersNumerical Integration and Differential Equations についてさらに検索
タグ タグを追加

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.5.0.0

Modification in the description

1.4.0.0

Modifications in the help text

1.2.0.0

Minor modifications in the descriptions and help texts of the two functions.