Ellipse Fit (Taubin method)

Fits an ellipse to a set of points on a plane; returns coefficients of the ellipse's equation.
ダウンロード: 6.1K
更新 2009/1/14

ライセンスの表示

編集メモ: This file was selected as MATLAB Central Pick of the Week

This is a fast non-iterative ellipse fit, and among fast non-iterative ellipse fits this is the most accurate and robust.

It takes the xy-coordinates of data points, and returns the coefficients of the equation of the ellipse:

ax^2 + bxy + cy^2 + dx + ey + f = 0,

i.e. it returns the vector A=(a,b,c,d,e,f). To convert this vector to the geometric parameters (semi-axes, center, etc.), use standard formulas, see e.g., (19) - (24) in Wolfram Mathworld: http://mathworld.wolfram.com/Ellipse.html

This fit was proposed by G. Taubin in article "Estimation Of Planar Curves, Surfaces And Nonplanar Space Curves Defined By Implicit Equations, With Applications To Edge And Range Image Segmentation", IEEE Trans. PAMI, Vol. 13, pages 1115-1138, (1991).

Note: this method fits a quadratic curve (conic) to a set of points; if points are better approximated by a hyperbola, this fit will return a hyperbola. To fit ellipses only, use "Direct Ellipse Fit".

引用

Nikolai Chernov (2025). Ellipse Fit (Taubin method) (https://jp.mathworks.com/matlabcentral/fileexchange/22683-ellipse-fit-taubin-method), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R12
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersFit Postprocessing についてさらに検索
謝辞

ヒントを得たファイル: Ellipse Fit

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0