Absolute Orientation

Computes the transformation to register two corresponding 3D point sets.
ダウンロード: 4.2K
更新 2010/6/9


[s R T error] = absoluteOrientationQuaternion( A, B, doScale)

Computes the orientation and position (and optionally the uniform scale factor) for the transformation between two corresponding 3D point sets Ai and Bi such as they are related by:

Bi = sR*Ai+T

Implementation is based on the paper by Berthold K.P. Horn:
"Closed-from solution of absolute orientation using unit quaternions"
The paper can be downloaded here:

Dr. Christian Wengert, Dr. Gerald Bianchi

ETH Zurich, Computer Vision Laboratory, Switzerland

A 3xN matrix representing the N 3D points
B 3xN matrix representing the N 3D points
doScale Flag indicating whether to estimate the uniform scale factor as well [default=0]

s The scale factor
R The 3x3 rotation matrix
T The 3x1 translation vector
err Residual error (optional)

Notes: Minimum 3D point number is N > 4

The residual error is being computed as the sum of the residuals:

for i=1:Npts
d = (B(:,i) - (s*R*A(:,i) + T));
err = err + norm(d);


R = [0.36 0.48 -0.8 ; -0.8 0.6 0 ; 0.48 0.64 0.6];
T= [45 -78 98]';
X = [ 0.272132 0.538001 0.755920 0.582317;
0.728957 0.089360 0.507490 0.100513;
0.578818 0.779569 0.136677 0.785203];
Y = s*R*X+repmat(T,1,4);

[s2 R2 T2 error] = absoluteOrientationQuaternion( X, Y, 1);

error = 0;

%Add noise
Noise = [
-0.23 -0.01 0.03 -0.06;
0.07 -0.09 -0.037 -0.08;
0.009 0.09 -0.056 0.012];

Y = Y+Noise;
[s2 R2 T2 error] = absoluteOrientationQuaternion( X, Y, 1);

error = 0.33


Christian Wengert (2024). Absolute Orientation (https://www.mathworks.com/matlabcentral/fileexchange/22422-absolute-orientation), MATLAB Central File Exchange. 取得済み .

MATLAB リリースの互換性
作成: R13
Windows macOS Linux
Help Center および MATLAB AnswersGeometric Transformation and Image Registration についてさらに検索

ヒントを与えたファイル: Absolute Orientation - Horn's method

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート

Based on Bryan Murawski's comments, I reviewed the computation of the residual error. Indeed, it seemed a bit strange, I thus changed the computation a bit so that it reflects the overall error of the transformation.

Missing functions added

Update, included the missing function crossprodQuaternion.
Sorry for that