This is a tool for K-means clustering. After trying several different ways to program, I got the conclusion that using simple loops to perform distance calculation and comparison is most efficient and accurate because of the JIT acceleration in MATLAB.
The code is very simple and well documented, hence is suitable for beginners to learn k-means clustering algorithm.
Numerical comparisons show that this tool could be several times faster than kmeans in Statistics Toolbox.
引用
Yi Cao (2026). Efficient K-Means Clustering using JIT (https://jp.mathworks.com/matlabcentral/fileexchange/19344-efficient-k-means-clustering-using-jit), MATLAB Central File Exchange. 取得日: .
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
タグ
謝辞
ヒントを与えたファイル: Patch color selector
| バージョン | 公開済み | リリース ノート | |
|---|---|---|---|
| 1.0.0.0 | correct bugs in examples |
