This code implements the basic back propagation of error learning algorithm. the network has tanh hidden neurons and a linear output neuron, and applied for predicting y=sin(2pix1)*sin(2pix2).
We didn't use any feature of neural network toolbox.
引用
Alireza (2026). Function Approximation Using Neural Network Without using Toolbox (https://jp.mathworks.com/matlabcentral/fileexchange/17355-function-approximation-using-neural-network-without-using-toolbox), MATLAB Central File Exchange. 取得日: .
MATLAB リリースの互換性
作成:
R2007a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Deep Learning Toolbox > Train Deep Neural Networks > Function Approximation, Clustering, and Control > Function Approximation and Clustering > Define Shallow Neural Network Architectures >
Help Center および MATLAB Answers で Define Shallow Neural Network Architectures についてさらに検索
タグ
mlp/
| バージョン | 公開済み | リリース ノート | |
|---|---|---|---|
| 1.0.0.0 | BSD License |
