lmcurvefit
バージョン 2.0.0 (4.34 KB) 作成者:
Lateef Adewale Kareem
curve fitting using Levenberg Marquardt algorithm
% the following examples are available here
% https://www.mathworks.com/help/optim/ug/lsqcurvefit.html
% you can compare to the result from lmcurvefit to that of inbuilt matlab
% function lsqcurvefit
%% Example 1 (Unconstrained Curve Fitting)
close all
xdata = [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3]';
ydata = [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5]';
x0 = [100;-1];
times = linspace(xdata(1),xdata(end))';
scatter(xdata, ydata, 'o'); hold on;
plt = plot(times, myfun1(x0, times), 'r');
model = @(x,xdata) myfun1(x, xdata, times, plt);
[x_lm, ~, ~, ~, output] = lmcurvefit(model, x0, xdata, ydata,[],[],[],[])
%% Example 2 (Box Constrained Curve Fitting)
close all
xdata = linspace(0, 3)';
ydata = exp(-1.3*xdata)+0.05*rand(size(xdata));
lb = [0;-2];
ub = [3/4; -1];
x0 = [1/2;-2];
scatter(xdata, ydata, 'o'); hold on;
plt = plot(xdata, myfun2(x0, xdata), 'r');
model = @(x,xdata) myfun2(x, xdata, xdata, plt);
[x_lm, ~, resnorm_lm, residual_lm, output] = ...
lmcurvefit(model, x0, xdata, ydata, [], [], lb, ub);
%% Example 3 (Linear InEquality Constraint)
close all; clc
rng default
xdata = linspace(2,7)';
ydata = myfun3([2,4,5,0.5]',xdata) + 0.1*randn(size(xdata));
lb = zeros(4,1);
ub = 7*ones(4,1);
A = [-1 -1 1 1];
b = 0;
startpt = [1 2 3 1]';
options = optimoptions(@lsqcurvefit, Display='iter');
scatter(xdata, ydata, 'o'); hold on;
plt = plot(xdata, myfun3(startpt,xdata), 'r');
fineq = @(x)A*x - b;
fun = @(x, xdat) myfun3(x,xdat, plt);
[x_lm, ~, resnorm_lm, residual_lm, output_lm] = ...
lmcurvefit(fun, startpt, xdata, ydata, fineq, [], lb, ub);
%% Example 4 (Nonlinear InEquality Constraint)
close all; clc
rng default
xdata = linspace(2,7)';
ydata = myfun3([2,4,5,0.5]',xdata) + 0.1*randn(size(xdata));
lb = zeros(4,1);
ub = 7*ones(4,1);
startpt = [1 2 3 1]';
options = optimoptions(@lsqcurvefit, Display='iter');
scatter(xdata, ydata, 'o'); hold on;
plt = plot(xdata, myfun3(startpt,xdata), 'r');
fineq = @(x)x(1)^2 + x(2)^2 - 4^2;
fun = @(x, xdat) myfun3(x,xdat, plt);
[x_lm, ~, resnorm_lm, residual_lm, output_lm] = ...
lmcurvefit(fun, startpt, xdata, ydata, fineq, [], lb, ub);
%% model functions
function F = myfun1(x,xdata, times, plt)
F = x(1)*exp(x(2)*xdata);
if(nargin > 2)
plt.YData = x(1)*exp(x(2)*times);
drawnow; pause(0.01);
end
end
function F = myfun2(x,xdata, times, plt)
F = x(1)*exp(x(2)*xdata);
if(nargin >2)
plt.YData = x(1)*exp(x(2)*times);
drawnow; pause(0.01);
end
end
function F = myfun3(x,xdata, plt)
a = x(1); b = x(2); t0 = x(3); c = x(4);
F = a + b*atan(xdata - t0) + c*xdata;
if(nargin>2)
plt.YData = F;
drawnow; pause(0.01);
end
end
引用
Lateef Adewale Kareem (2024). lmcurvefit (https://www.mathworks.com/matlabcentral/fileexchange/172344-lmcurvefit), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
作成:
R2024a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxタグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!バージョン | 公開済み | リリース ノート | |
---|---|---|---|
2.0.0 | Algorithm is improved with back tracking. function handle for the updating the figure has been removed. But the example still shows how to achieve that by updating the plot inside the objective function. |
||
1.0.25 | corrected second example |
||
1.0.2 | Added functionality for bound and constraints. added jacobian file too. |
||
1.0.1 | improved stopping criteria |
||
1.0.0 |