TFCNN-BiGRU

TFCNN-BiGRU with self-attention mechanism for automatic human Emotion Recognition using Multi-Channel EEG Data
ダウンロード: 93
更新 2024/5/3

ライセンスの表示

A new deep learning architecture that combines a time-frequency convolutional neural network (TFCNN), a bidirectional gated recurrent unit (BiGRU), and a self-attention mechanism (SAM) to categorize emotions based on EEG signals and automatically extract features. The first step is to use the continuous wavelet transform (CWT), which responds more readily to temporal frequency variations within EEG recordings, as a layer inside the convolutional layers, to create 2D scalogram images from EEG signals for time series and spatial representation learning. Second, to encode more discriminative features representing emotions, two-dimensional (2D)-CNN, BiGRU, and SAM are trained on these scalograms simultaneously to capture the appropriate information from spatial, local, temporal, and global aspects.

引用

Prof. Dr. Essam H Houssein (2024). TFCNN-BiGRU (https://www.mathworks.com/matlabcentral/fileexchange/165126-tfcnn-bigru), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2024a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
タグ タグを追加
謝辞

ヒントを得たファイル: EEG SIGNAL ANALYSIS, Deep Learning Tutorial Series

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

TFCNN_BiGRU_SAM

バージョン 公開済み リリース ノート
1.0.0