Bifurcation diagram for the Lorenz system (local maxima)

バージョン 1.0.1 (2.16 KB) 作成者: Lazaros Moysis
Compute the bifurcation, or continuation, diagram for the Lorenz chaotic system through the local maxima method
ダウンロード: 59
更新 2024/3/18

ライセンスの表示

This code can be used to compute the bifurcation diagram for the Lorenz chaotic system using the local maxima method.
This is alternative method to plotting the points of intersection with a given plane. Here, we only compute the local maxima of a chosen state, and plot them.
The diagram is generated by simulating the system from fixed initial conditions, and after discarding the transient, finding the local peaks of a given state.
The code can be easily adapted to compute a continuation diagram, where after each simulation, the initial condition is set equal to the final value of the previous simulation.
The code can also be easily adapted to any chaotic system, not just the Lorenz. What you need to do is replace the lorenz call in the ode45 with any chaotic system of your choice.
For the classic method to generate the bifurcation diagram, see the video below

引用

Lazaros Moysis (2024). Bifurcation diagram for the Lorenz system (local maxima) (https://www.mathworks.com/matlabcentral/fileexchange/158081-bifurcation-diagram-for-the-lorenz-system-local-maxima), MATLAB Central File Exchange. 取得済み .

MATLAB リリースの互換性
作成: R2023b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
謝辞

ヒントを得たファイル: Bifurcation diagram for the Lorenz Chaotic system

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.1

fixed typos

1.0.0