mRMR Feature Selection (using mutual information computation)

This is a cross-platform version of mimimum-redundancy maximum-relevancy feature selection
ダウンロード: 22.3K
更新 2007/4/19

ライセンスがありません

This package is the mRMR (minimum-redundancy maximum-relevancy) feature selection method in (Peng et al, 2005 and Ding & Peng, 2005, 2003), whose better performance over the conventional top-ranking method has been demonstrated on a number of data sets in recent publications. This version uses mutual information as a proxy for computing relevance and redundancy among variables (features). Other variations such as using correlation or F-test or distances can be easily implemented within this framework, too.

Hanchuan Peng, Fuhui Long, and Chris Ding, "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,"
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27, No. 8, pp.1226-1238, 2005. [PDF]

Ding C., and Peng HC, "Minimum redundancy feature selection from microarray gene expression data," Journal of Bioinformatics and Computational Biology,
Vol. 3, No. 2, pp.185-205, 2005. [PDF]

Ding, C and Peng HC, Proc. 2nd IEEE Computational Systems Bioinformatics Conference (CSB 2003),
pp.523-528, Stanford, CA, Aug, 2003.

引用

Hanchuan Peng (2024). mRMR Feature Selection (using mutual information computation) (https://www.mathworks.com/matlabcentral/fileexchange/14608-mrmr-feature-selection-using-mutual-information-computation), MATLAB Central File Exchange. 取得済み .

MATLAB リリースの互換性
作成: R14SP3
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersQSP, PKPD, and Systems Biology についてさらに検索
謝辞

ヒントを与えたファイル: Backpropagation-based Multi Layer Perceptron Neural Networks

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0

correct some typos