This code simulates a reinforcement learning (RL) strategy for the dynamic optimization of phase shifts in an intelligent reflective surface (IRS) within a wireless communication scenario. Its main goal is the adaptive modification of IRS phase shifts to optimize the signal-to-noise ratio (SNR) at the receiving end, thus improving overall system performance. This code can serve as a foundational framework for exploring the capabilities of RL in more complex and practical IRS optimization scenarios.
引用
Ardavan Rahimian (2025). RL-Driven Adaptive Phase Optimization for IRS-Based Systems (https://www.mathworks.com/matlabcentral/fileexchange/136816-rl-driven-adaptive-phase-optimization-for-irs-based-systems), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
作成:
R2023b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxタグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.0 |