This MATLAB function provides a straightforward method to calculate the Normalized Mutual Information (NMI) between two sets of cluster assignments. NMI is a valuable measure in clustering as it can provide an understanding of how similar two different sets of cluster assignments are, even if the number of clusters differ between the two sets.
The function takes two label arrays as input, both representing different clustering assignments for the same dataset. It returns a scalar value representing the NMI of the two sets of labels, a measure of similarity ranging between 0 (no mutual information, completely dissimilar clusterings) and 1 (perfect correlation, completely identical clusterings).
This function has been verified against Python's sklearn.metrics.normalized_mutual_info_score function for accuracy and consistency.
Whether you are performing a cluster analysis and wish to compare results under different conditions or algorithms, this function provides a quick and reliable method to quantify the level of agreement between different clustering assignments. Enjoy exploring your clustering analysis in MATLAB!
引用
qqffssxx (2024). Normalized Mutual Information (NMI) for Cluster Analysis (https://www.mathworks.com/matlabcentral/fileexchange/130784-normalized-mutual-information-nmi-for-cluster-analysis), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
作成:
R2018a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxタグ
謝辞
ヒントを得たファイル: Normalized Mutual Information
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.0.0 |