Iterative Closest Point Method

Fits a set of data points to a set of model points under a rigid body transformation
ダウンロード: 25.3K
更新 2021/7/2

ライセンスの表示

The ICP (iterative closest point) algorithm finds a rigid body transformation such that a set of data points fits to a set of model points under the transformation. Default is to use least squares minimization but other criterion functions can be used as well. The implementation is based on the IRLS-ICP described in [1].
References:
[1] Bergström, P. and Edlund, O. 2014, “Robust registration of point sets using iteratively reweighted least squares”, Computational Optimization and Applications, vol 58, no. 3, pp. 543-561, doi: 10.1007/s10589-014-9643-2
[2] Bergström, P. and Edlund, O. (2016) 2017, “Robust registration of surfaces using a refined iterative closest point algorithm with a trust region approach”, Numerical Algorithms, doi: 10.1007/s11075-016-0170-3
Doi links:
http://dx.doi.org/10.1007/s10589-014-9643-2
http://dx.doi.org/10.1007/s11075-016-0170-3
http://dx.doi.org/10.1007/s00170-010-2950-6
Springer Nature’s SharedIt links (full paper online access):
http://rdcu.be/nJRM
http://rdcu.be/noHE
http://rdcu.be/nJUW
A demonstration of applications, where an ICP-algorithm [2] is implemented in Matlab and C, can be seen on YouTube
https://youtu.be/cPS-DY9sCz4

引用

Per Bergström (2025). Iterative Closest Point Method (https://jp.mathworks.com/matlabcentral/fileexchange/12627-iterative-closest-point-method), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2015a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersDelaunay Triangulation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.6.0.1

Update of links

1.6.0.0

Improved documentation

1.5.0.0

A new implementation of the ICP algorithm and three examples are added

1.0.0.0

Have added additional inputs to icp.