Singular Fourier-Pade approximation

バージョン 1.0.0.0 (1.71 KB) 作成者: Toby Driscoll
Circumvention of the Gibbs phenonmenon though Pade approximations with singularities
ダウンロード: 1.8K
更新 2006/9/26

ライセンスの表示

Partial sums of Fourier terms for a function with jumps in value or derivative converge poorly, because of the Gibbs phenomenon. This file uses the Fourier coefficients, and locations of the singularities, to construct a different approximation that converges spectrally. For details, see T. A. Driscoll and B. Fornberg, Numerical Algorithms 26 (2001), pp. 77-92.

Example for f(x)=|x|, using 7 Fourier coefficients:

c = [pi/4 zeros(1,11)];
c(2:2:12) = -(2/pi)*(1:2:11).^(-2);
z0 = exp(1i*[-pi 0]);
[p,q,r] = padelog(c,z0);

% Make a plot:
x = linspace(-pi+10*eps,pi-10*eps,200); z = exp(1i*x);
pz = polyval(p(end:-1:1),z);
qz = polyval(q(end:-1:1),z);
rz{1} = polyval(r{1}(end:-1:1),z);
rz{2} = polyval(r{2}(end:-1:1),z);
fplus = ( pz + rz{1}.*log(1-z/z0(1)) + rz{2}.*log(1-z/z0(2)) ) ./ qz;
plot(x,abs(x),x,2*real(fplus),'k.')

引用

Toby Driscoll (2025). Singular Fourier-Pade approximation (https://www.mathworks.com/matlabcentral/fileexchange/12402-singular-fourier-pade-approximation), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R14SP3
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0.0