Tutorial: Bayesian Optimization
バージョン 1.0.0 (4.02 KB) 作成者:
Karl Ezra Pilario
1D and 2D black-box Bayesian optimization demonstration with visualizations.
This code shows a visualization of each iteration in Bayesian Optimization. MATLAB's fitrgp is used to fit the Gaussian process surrogate model, then the next sample is chosen using the Expected Improvement acquisition function. An exploitation-exploration parameter can be changed in the code. The code contains both 1D and 2D "black-box" functions for optimization.
References:
[1] Rasmussen and Williams (2006). "Gaussian Processes for Machine Learning," MIT Press.
[2] Frazier (2018). https://arxiv.org/abs/1807.02811
[3] Snoek (2012). https://arxiv.org/pdf/1206.2944.pdf
引用
Karl Ezra Pilario (2023). Tutorial: Bayesian Optimization (https://www.mathworks.com/matlabcentral/fileexchange/114950-tutorial-bayesian-optimization), MATLAB Central File Exchange. 取得済み .
MATLAB リリースの互換性
作成:
R2022a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linuxタグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.0.0 |