# Binary Dataset

バージョン 1.0 (4.05 KB) 作成者:
MATLAB code for 2D or 3D binary dataset for classification.
ダウンロード: 39

# 🔥🔥 BinaryDataset

MATLAB code for 2D or 3D binary dataset.

## ✨ MAIN FEATURES

• 2D or 3D binary dataset of "banana" and "circle" shapes.
• Partitioning of training dataset/label and test dataset/label.

## 🔨 HOW TO USE

```ocdata = BinaryDataset();
[data, label] = ocdata.generate;
[trainData, trainLabel, testData, testLabel] = ocdata.partition;```

The full Name-Value Arguments of class `BinaryDataset` are

• `shape`: shape of dataset, 'banana' or 'circle'.
• `dimensionality`: dimensionality of dataset, 2 or 3.
• `number`: number of samples per class, for example: [200, 200].
• `display`: visualization, 'on' or 'off'.
• `noise`: noise added to dataset with range [0, 1]. For example: 0.2.
• `ratio`: ratio of the test set with range (0, 1). For example: 0.3.

### 👉 Example 1

Generate a 3D banana-shaped dataset with 200 and 100 samples for each class, and divide 10% of the data into the test dataset.

```ocdata = BinaryDataset( 'shape', 'banana',...
'dimensionality', 3,...
'number', [200, 100],...
'display', 'on', ...
'noise', 0.2,...
'ratio', 0.1);
[data, label] = ocdata.generate;
[trainData, trainLabel, testData, testLabel] = ocdata.partition;```

### 👉 Example 2

Generate a 2D circle-shaped dataset with 100 and 300 samples for each class, and divide 50% of the data into the test dataset.

```ocdata = BinaryDataset( 'shape', 'circle',...
'dimensionality', 2,...
'number', [100, 300],...
'display', 'on', ...
'noise', 0.2,...
'ratio', 0.5);
[data, label] = ocdata.generate;
[trainData, trainLabel, testData, testLabel] = ocdata.partition;```

### 引用

Kepeng Qiu (2024). Binary Dataset (https://github.com/iqiukp/BinaryDataset/releases/tag/v1.0), GitHub. 取得済み .

##### MATLAB リリースの互換性

R2016b 以降のリリースと互換性あり
##### プラットフォームの互換性
Windows macOS Linux

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。