Deep Learning for Real-Time Top Quark Jet Tagging

バージョン 1.2.0 (589 KB) 作成者: Temo Vekua
End-to-end MATLAB Deep Learning workflow for Real-Time Top Quark Jet Tagging is presented
ダウンロード: 59
更新 2023/2/1

Deep-Learning-for-Real-Time-Top-Jet-Tagging

End-to-end MATLAB® workflow for Real-Time Top Quark Jet Tagging is presented. Live script contains a predictive model, based on deep convolutional neural network, that discriminates top quark (signal) jets from QCD plain vanilla (background) jets. Besides a predictive model, the workflow presented includes: accessing and preprocessing particle scattering data, transforming jets to 2D images, and code generation for deployment of the network on FPGA.

Setup

To Run:

  1. Download particle jets open datasets as instructed in the Reference Datasets section of the Live script. Open Python, import part of the randomly sampled data as pandas dataframes and save in parquet format.
  2. Import parquet data as a MATLAB table, preprocess jets to images and save to disc.
  3. Build deep convolusional neural network using App designer® and train network using training datasets.
  4. Check accuracy of the network on test datasets.
  5. Deploy trained network on FPGA following Deploy Trained Network on FPGA section of the Live script.

MathWorks Products (https://www.mathworks.com)

Requires MATLAB release R2020a or newer

引用

Temo Vekua (2024). Deep Learning for Real-Time Top Quark Jet Tagging (https://github.com/MathWorks-Teaching-Resources/Deep-Learning-for-Real-Time-Top-Jet-Tagging), GitHub. に取得済み.

MATLAB リリースの互換性
作成: R2021b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
タグ タグを追加

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

GitHub の既定のブランチを使用するバージョンはダウンロードできません

バージョン 公開済み リリース ノート
1.2.0

included image

1.1.0

connected to github

1.0.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。