Confidence Region Radius

バージョン 1.0.0.0 (59.3 KB) 作成者: Tom Davis
Confidence Intervals, Circles, and Spheres

ダウンロード 3.7K 件

更新 2008/3/17

ライセンスの表示

R = CRR(S) computes the radius of the mean-centered interval, circle, or sphere with 95% probability given S, which is either a vector of standard deviations or a covariance matrix from a multivariate normal distribution. If S is a real, symmetric, positive semidefinite matrix, CRR(S) is equivalent to CRR(SQRT(EIG(S))). Scalar S is treated as a standard deviation.

R = CRR(S,P) computes the confidence region radius with probability P instead of the default, which is 0.95.

R = CRR(S,P,TOL) uses a quadrature tolerance of TOL instead of the default, which is 1e-15. Larger values of TOL may result in fewer function evaluations and faster computation, but less accurate results. Use [] as a placeholder to obtain the default value of P.

R = CRR(S,P,TOL,M) performs a bootstrap validation with M normally distributed random samples of size 1e6. Use [] as a placeholder to obtain the default value of TOL.

R = CRR(S,P,TOL,[M N]) performs a bootstrap validation with M normally distributed random samples of size N.

引用

Tom Davis (2022). Confidence Region Radius (https://www.mathworks.com/matlabcentral/fileexchange/10526-confidence-region-radius), MATLAB Central File Exchange. 取得済み .

MATLAB リリースの互換性
作成: R13
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
謝辞

ヒントを得たファイル: SEP - An Algorithm for Converting Covariance to Spherical Error Probable

ヒントを与えたファイル: Rectangular Confidence Regions

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!