メインコンテンツ

結果:


Rik
Rik
最後のアクティビティ: 2024 年 9 月 17 日

Similar to what has happened with the wishlist threads (#1 #2 #3 #4 #5), the "what frustrates you about MATLAB" thread has become very large. This makes navigation difficult and increases page load times.
So here is the follow-up page.
What should you post where?
Wishlist threads (#1 #2 #3 #4 #5): bugs and feature requests for Matlab Answers
Frustation threads (#1 #2): frustations about usage and capabilities of Matlab itself
Missing feature threads (#1 #2): features that you whish Matlab would have had
Next Gen threads (#1): features that would break compatibility with previous versions, but would be nice to have
@anyone posting a new thread when the last one gets too large (about 50 answers seems a reasonable limit per thread), please update this list in all last threads. (if you don't have editing privileges, just post a comment asking someone to do the edit)
Michael Carone
Michael Carone
最後のアクティビティ: 2020 年 7 月 9 日

As an environment for modeling, simulating, and testing dynamic systems, Simulink is used for:

Simulink is now available in a web browser as Simulink Online.

Simulink Online is available to anyone with access to MATLAB Online (see supported license types here) and a Simulink license.

Just sign into MATLAB Online and either start Simulink or open a Simulink model.

Learn more about Simulink Online at the product page on our website.

Simulink Online currently supports the following toolboxes, with more to be added in the future!

  • Simulink
  • Stateflow
  • Simscape
  • Simscape Electrical
  • Simscape Multibody
  • Simulink Control Design
  • DSP System Toolbox

MathWorks gave a perspective on 'Bridging the Technology Readiness Gap with Simulation and Virtual/Remote Testbenches' at the Opal-RT RT20 Panel Session on The Role of Real-Time Simulation in Education. Listen to a recording of the panel session, and also hear perspectives from Quanser, Hydro-Quebec, and RWTH Aachen, by registering for the RT20 conference at the following link .

The EMEA (Europe, Middle East and Africa) Academic Engineering Team are hosting a series of live online webinars every Tuesday and Wednesday. Get up to speed with online teaching and research with MATLAB and access ready-to-use resources.

Watch the introductory video and register here

Ningamma Musigeri
Ningamma Musigeri
最後のアクティビティ: 2020 年 6 月 18 日

Where is very courses and how to catch the courses

Div Tiwari
Div Tiwari
最後のアクティビティ: 2020 年 8 月 21 日

In this article, we discuss how educators can adopt simulation, alternative hardware, and other teaching resources to transition lab-based classes to distance learning: https://medium.com/mathworks/tips-for-moving-your-lab-based-classes-online-1cb53e90ee00.

Do you teach a lab-based class? Please share your thoughts, questions, experience, and feedback on these ideas here. I also welcome you to invite your colleagues to join the discussion here.

One community within MathWorks that has been helping students continue their learning is MATLAB Student Ambassadors. Despite new challenges with transitioning to distance learning, student ambassadors have done a truly amazing job. In a blog that was published recently, I discuss 3 examples of the great things that our student ambassadors have done to aid distance learning. Click here to read the blog. I hope after reading this blog you share my level of admiration for these students.

Student Ambassador at University of Houston hosting a fun and informative virtual event.

srinivasa rao m
srinivasa rao m
最後のアクティビティ: 2020 年 5 月 13 日

hi how to apply single stream into multiple channels in fft simulink simulation from workspace

Vatsal Modi
Vatsal Modi
最後のアクティビティ: 2020 年 5 月 6 日

Sir how can we use Image processing in the Distance Learning

Yossi Chait
Yossi Chait
最後のアクティビティ: 2020 年 6 月 22 日

I wanted to briefly share my experience in transitioning from a hands-on lab course to a virtual lab in MATLAB. Here at UMass Amherst, Mechanical & Industrial Engineering, we have a required undergraduate lab sequence, one during junior year and another during senior year. I teach the 2nd course, MIE 402, with a focus on measurements, data acquisition, system dynamics, and control.
The main idea behind our labs, in addition to the all too important hands-on experience, is to provide the students with a platform where they can validate and understand limitations of theoretical models from experimental data.
While the hands-on aspect was lost, we were able to create virtual experiments that consisted on Simulink models saved as protected files. In our protected models, students were able to assign input variables, decide on simulation parameters (e.g., integration parameters), and have certain outputs saved to the workspace. The key for making this a challenging lab was twofold: (1) Students were not told about the level of modelling detail inside the protected file (e.g., were dry friction or electrical inductance included?) and (2) each student was assigned a different set of model parameters based on their student ID (via a predefined table inside the protected file). The 2nd point was especially impactful as students felt as if they are working on their own experiment.
We developed virtual labs for a tuned mass damper and a DC motor experiments. Feedback from the students showed that they missed the hands-on experience but really liked being able to interact, as many times as needed, with the virtual lab at their time frame of choice, and have the ability to interact with us (grad assistant and myself) then re-run the experiment to test new ideas.
Some future developments that could significantly enhance the educational impact of such virtual labs would be the addition of real-time animation and increased level of modelling (e.g., data acquisition effects, electromagnetics, etc.’). At UMass we presently do not have access to the entire suite of MATLAB tools, something that prevented us from including these ideas in our virtual labs.
This would have not been possible without Andy Bartlett (tremendous Simulink help) and Div Tiwari (quickly getting us access to required tools).

Professor Martin Trauth has shared lots of teaching resources on his MATLAB Recipes for Earth Sciences site. Now with the changes created by COVID, he's shifting his courses to online, including at-home phone-based data collection. Read how he's doing this and find additional resources: Teaching Data Analysis with MATLAB in COVID-19 Times (Trauth, Potsdam)

A common question you may have when integrating MATLAB Grader into your LMS using the LTI standard is what information is being sent to MATLAB Grader from your LMS?

First, please familiarize yourself with the LTI specification on the IMS Global website: http://www.imsglobal.org/specs/ltiv1p1/implementation-guide

Next, take a look at the documentation we provide on LMS integration that is specific to your platform/vendor: https://www.mathworks.com/help/matlabgrader/lms-integration.html

MathWorks does not require personally identifiable information. More specifically, here are the standard LTI fields that we DO NOT want nor collect, as opposed to what fields we DO collect.

We do NOT want your LMS to send us: - user_image - lis_person_name_given - lis_person_name_family - lis_person_name_full - lis_person_contact_email

We DO require from your LMS: - roles

The other LTI fields listed in the specification are not related to personally identifiable information, and may be required for the LTI session to be launched successfully. For further questions about what is contained in the LTI specification, please refer to the specification and implementation guide provided by IMS, or contact the vendor of your LMS.

Even
Even
最後のアクティビティ: 2023 年 7 月 23 日

If a large number of fair N-sided dice are rolled, the average of the simulated rolls is likely to be close to the mean of 1,2,...N i.e. the expected value of one die. For example, the expected value of a 6-sided die is 3.5.
Given N, simulate 1e8 N-sided dice rolls by creating a vector of 1e8 uniformly distributed random integers. Return the difference between the mean of this vector and the mean of integers from 1 to N.
function dice_diff = loln(N)
A=randi([1,N],1e8,1)
M=mean(A)
B=1:N
m=mean(B)
dice_diff =abs(M-m);
end
Here is my code, but it can't work out as it needs too long time to creat A.
Amin Zarbakhsh
Amin Zarbakhsh
最後のアクティビティ: 2020 年 4 月 27 日

can anyone advise which Matlab code I can add to the below codes to have Spectrogram Plot?

OptimalValuesx1y1z1 = [dataArray{1:end-1}];
%% Clear temporary variables
clearvars filename delimiter formatSpec fileID dataArray ans;
re=1;
fs=20e3/re;
datatable=OptimalValuesx1y1z1;
datatable=resample(OptimalValuesx1y1z1,1,re);
%datatable=lowpass(OptimalValuesx1y1z1,10,fs);
datatable(:,2)=datatable(:,2).*0.01;
figure
t=1/fs:1/fs:length(datatable)/fs;
plot(t, rms(datatable(:,2:4)*9.81,3));
ylim([0 10])  
xlim([0 10])
%ylim([0 1])
hold on
%plot(t,ones(1,length(datatable(:,2:4)*9.81))*12,'r--')
xlabel('Time [s]')
ylabel('Amplitude [m/s^2]')
legend('axis X','axis Y','axis Z','limit')
out_mean = mean(rms(datatable(:,2:4),3))
std_mean = std(rms(datatable(:,2:4),3))
% %PSD analysis
figure
x=datatable(:,2:4)*9.81;
nbar = 4;
sll = -30;
win = taylorwin(length(x),nbar,sll);
periodogram(x,win,[],fs);
xlim([0 1.624])
legend('axis X','axis Y','axis Z')
Hafsa Asif
Hafsa Asif
最後のアクティビティ: 2020 年 4 月 24 日

plz tell me the web site where i can easily install mathlab.

G Behery
G Behery
最後のアクティビティ: 2020 年 4 月 25 日

I want to use the Image fusions and deep neural network to detect the Corona-virus (COVID-19)

Created and tested in the university classroom, the Introduction to MATLAB zyBook includes automated assessment using MATLAB Grader. Learn how to create custom MATLAB assignments using zyLabs and provide feedback.

Join this webinar running April 21st and 23rd

Here is a great video from Gartner in response to COVID-19 and trends they are seeing for schools transitioning to Distance Learning. We hope this is helpful! See here: Gartner Research

Christophe
Christophe
最後のアクティビティ: 2020 年 4 月 22 日

I organized in September 2019 a one-week workshop in a hybrid set-up (students could attend the workshop either on-site or fully on-line). Beyond the hybrid nature of the workshop, the workshop was "flipped": the workshop attendees had to study some handbook specifically written for the workshop, watch some short videos summarizing the main concepts and answer online quizzes. During the workshop, most of the time was spent on hands-on coding exercises and assignments, during which the workshop attendees had to apply the concepts presented in the handbook and videos.

All coding exercises and assignments were carried out with MATLAB Grader. The platform provided the same coding environment to all workshop attendees, irrespective of whether they attended the workshop on-site or remotely. Furthermore, by providing a coding template and rigorous assessment tests along each exercise, having all students converging to the right "solution" was painless. It allowed me, as a teacher, to entirely focus on helping the students in solving those exercises, which was extremely rewarding.

This teaching set-up, combined with smart IT solutions as e.g MATLAB Grader, favors deep student learning, since the students learn by doing (active learning) and are continuously supported by the teacher in their learning.

I will soon teach in another course along the same principles. The course was supposed to be given on-site only, but because of the outbreak of Covid-19, it will be given entirely online. Thanks to MATLAB Grader, the migration to a online set-up is straightforward.

In case you want to read more about some of my past efforts in the development and application of student-centred pedagogical approaches, you can read more about those at: https://www.chalmers.se/en/departments/physics/news/Pages/Teaching-the-algorithms-that-are-crucial-for-nuclear-reactor-modelling.aspx and https://www.chalmers.se/en/departments/physics/news/Pages/Online-educational-efforts-to-ensure-nuclear-safety.aspx

I will also be glad to answer questions and provide help to those of you who want to get started with online teaching.

Christophe

This Coursera course teaches computer programming to those with little to no previous experience: https://www.coursera.org/learn/matlab

Your students might find this course a useful introduction to programming.

I took a course on Medical Image Processing from one of the instructors, Prof Mike Fitzpatrick, when I was a graduate student at Vanderbilt University a few decades ago. He's a great instructor who helped get me hooked on MATLAB for learning, teaching and researching!