メインコンテンツ

Results for


jak
jak
Last activity 36分 前

ere's a single MATLAB script addressing all the problems described:
matlab
% Problem 1: Simple if Statement
x = 5; % Example value
if x > 0
disp('The number is positive.');
end
% Problem 2: if ... else Statement
x = 7; % Example value
if mod(x, 2) == 0
disp('The number is even.');
else
disp('The number is odd.');
end
% Problem 3: if ... elseif ... else Statement
score = 85; % Example value
if score >= 90 && score <= 100
disp('Grade A');
elseif score >= 80 && score < 90
disp('Grade B');
elseif score >= 70 && score < 80
disp('Grade C');
elseif score >= 60 && score < 70
disp('Grade D');
else
disp('Grade F');
end
% Problem 4: Nested if Statement
x = 8; % Example value
if x > 0
if mod(x, 2) == 0
disp('The number is positive and even.');
else
disp('The number is positive and odd.');
end
end
% Problem 5: Temperature Classification (if ... elseif)
T = 18; % Example value
if T < 0
disp('Freezing');
elseif T >= 0 && T <= 15
disp('Cold');
elseif T >= 16 && T <= 25
disp('Mild');
else
disp('Hot');
end
% Problem 6: Simple switch Statement
grade = 'B'; % Example value
switch grade
case 'A'
disp('Excellent');
case 'B'
disp('Good');
case 'C'
disp('Fair');
case 'D'
disp('Poor');
case 'F'
disp('Fail');
otherwise
disp('Invalid grade.');
end
% Problem 7: Nested switch Statement
department = 'Engineering'; % Example value
major = 'Mechanical'; % Example value
switch department
case 'Engineering'
switch major
case 'Electrical'
disp('Electrical Engineering');
case 'Mechanical'
disp('Mechanical Engineering');
case 'Civil'
disp('Civil Engineering');
otherwise
disp('Unknown major.');
end
case 'Arts'
disp('Arts Department');
case 'Sciences'
disp('Sciences Department');
otherwise
disp('Unknown department.');
end
% Problem 8: Leap Year Check (if Statements)
year = 2024; % Example value
if mod(year, 4) == 0
if mod(year, 100) ~= 0 || mod(year, 400) == 0
disp('Leap year');
else
disp('Not a leap year');
end
else
disp('Not a leap year');
end
% Problem 9: Triangle Type (if ... elseif)
a = 5; b = 5; c = 5; % Example values
if a == b && b == c
disp('Equilateral triangle');
elseif a == b || b == c || a == c
disp('Isosceles triangle');
else
disp('Scalene triangle');
end
% Problem 10: Calculator with switch Statement
num1 = 10; % Example value
num2 = 5; % Example value
operation = '*'; % Example value
switch operation
case '+'
result = num1 + num2;
disp(['Result: ', num2str(result)]);
case '-'
result = num1 - num2;
disp(['Result: ', num2str(result)]);
case '*'
result = num1 * num2;
disp(['Result: ', num2str(result)]);
case '/'
if num2 ~= 0
result = num1 / num2;
disp(['Result: ', num2str(result)]);
else
disp('Error: Division by zero');
end
otherwise
disp('Invalid operation');
end
This code covers all the problems mentioned in your document. Replace the example values with inputs as needed.
% MATLAB Homework Solutions
% Problem 1: Sum of Even Numbers using while Loop
sum_even = 0;
num = 1;
while num <= 50
if mod(num, 2) == 0
sum_even = sum_even + num;
end
num = num + 1;
end
disp('Problem 1: Sum of Even Numbers');
disp(sum_even);
% Problem 2: Factorial Calculation using for Loop
n = 5; % Example number to calculate factorial
factorial_result = 1;
for i = 1:n
factorial_result = factorial_result * i;
end
disp('Problem 2: Factorial of the number');
disp(factorial_result);
% Problem 3: Multiplication Table using Nested Loops
disp('Problem 3: 10x10 Multiplication Table');
for i = 1:10
for j = 1:10
fprintf('%d\t', i * j);
end
fprintf('\n');
end
% Problem 4: Count Digits using while Loop
number = 12345; % Example number
digit_count = 0;
while number > 0
number = floor(number / 10);
digit_count = digit_count + 1;
end
disp('Problem 4: Number of digits');
disp(digit_count);
% Problem 5: Skip Multiples of 3 using for Loop and continue
disp('Problem 5: Numbers from 1 to 20 (skipping multiples of 3)');
for i = 1:20
if mod(i, 3) == 0
continue;
end
disp(i);
end
% Problem 6: Break a while Loop when Condition is Met
num = 101; % Start checking from 101
while true
if mod(num, 5) == 0 && mod(num, 7) == 0
disp('Problem 6: First number greater than 100 divisible by 5 and 7');
disp(num);
break;
end
num = num + 1;
end
% Problem 7: Summing Diagonal Elements using Nested Loops
matrix = randi([1, 20], 5, 5); % Create a 5x5 random matrix
diagonal_sum = 0;
for i = 1:5
diagonal_sum = diagonal_sum + matrix(i, i);
end
disp('Problem 7: Sum of diagonal elements');
disp(matrix); % Display the matrix
disp(diagonal_sum);
% Problem 8: Reverse a Number using while Loop
num = 12345; % Example number
reversed = 0;
while num > 0
remainder = mod(num, 10);
reversed = reversed * 10 + remainder;
num = floor(num / 10);
end
disp('Problem 8: Reversed number');
disp(reversed);
% Problem 9: Prime Number Checker using for Loop and break
num = 29; % Example number to check
is_prime = true; % Assume the number is prime
if num < 2
is_prime = false;
else
for i = 2:sqrt(num)
if mod(num, i) == 0
is_prime = false;
break;
end
end
end
disp('Problem 9: Is the number prime?');
disp(is_prime);
% Problem 10: Display Pascal's Triangle using Nested Loops
n = 5; % Number of rows in Pascal's Triangle
disp('Problem 10: Pascal''s Triangle');
for i = 0:n-1
row = 1; % First element in the row
for j = 0:i
fprintf('%d ', row);
row = row * (i - j) / (j + 1); % Calculate next element
end
fprintf('\n'); % Move to the next row
end
% MATLAB Homework: Matrix Solutions
%% 1. Create a 5x5 Matrix
A1 = reshape(1:25, 5, 5)'; % 5x5 matrix with elements 1 to 25 arranged row-wise
disp('1. 5x5 Matrix:');
disp(A1);
%% 2. Element Referencing
b = [10 20 30; 40 50 60; 70 80 90];
element = b(3,2); % Element in 3rd row, 2nd column
disp('2. Element Referencing (3rd row, 2nd column):');
disp(element);
%% 3. Column Vector Creation
v = b(:,1); % First column of matrix b
disp('3. Column Vector (1st column of b):');
disp(v);
%% 4. Sub-matrix Extraction
subMatrix = b(2:3, 1:2); % Last two rows, first two columns
disp('4. 2x2 Sub-Matrix:');
disp(subMatrix);
%% 5. Row Deletion
c = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16];
c(2,:) = []; % Delete second row
disp('5. Matrix after Row Deletion:');
disp(c);
%% 6. Column Deletion
c(:,3) = []; % Delete third column
disp('6. Matrix after Column Deletion:');
disp(c);
%% 7. Matrix Addition and Subtraction
d = [1 2 3; 4 5 6; 7 8 9];
e = [9 8 7; 6 5 4; 3 2 1];
addResult = d + e; % Matrix addition
subResult = d - e; % Matrix subtraction
disp('7. Matrix Addition (d + e):');
disp(addResult);
disp('Matrix Subtraction (d - e):');
disp(subResult);
%% 8. Matrix Scalar Operations
scalarMultiply = d * 3; % Multiply by 3
scalarDivide = d / 3; % Divide by 3
disp('8. Matrix after Scalar Multiplication (d * 3):');
disp(scalarMultiply);
disp('Matrix after Scalar Division (d / 3):');
disp(scalarDivide);
%% 9. Matrix Transposition
f = [1 3 5; 2 4 6];
fTranspose = f';
disp('9. Transposed Matrix:');
disp(fTranspose);
%% 10. Matrix Inverse and Determinant
g = [1 0 2; 2 1 3; 3 4 1];
det_g = det(g); % Determinant
disp('10. Determinant of Matrix g:');
disp(det_g);
if det_g ~= 0
gInverse = inv(g); % Inverse of g
disp('Inverse of Matrix g:');
disp(gInverse);
else
disp('Matrix g is singular and does not have an inverse.');
end
%% 11. Dynamic Matrix Creation
n = input('Enter the size of the square matrix n: ');
A_dynamic = zeros(n,n);
for i = 1:n
for j = 1:n
A_dynamic(i,j) = i * j;
end
end
disp('11. Dynamic Square Matrix A (i*j):');
disp(A_dynamic);
%% 12. Checkerboard Matrix
n = 8; % Size of checkerboard matrix
checkerboard = mod((1:n)' + (1:n), 2); % Checkerboard logic
disp('12. Checkerboard Matrix (n=8):');
disp(checkerboard);
%% 13. Rotating a Matrix 90 Degrees Clockwise
M = [1 2 3; 4 5 6; 7 8 9]; % Test matrix
rotatedMatrix = M';
rotatedMatrix = flipud(rotatedMatrix);
disp('13. Rotated Matrix (90 Degrees Clockwise):');
disp(rotatedMatrix);
%% 14. Diagonal Dominance Validator
function isDominant = checkDiagonalDominance(X)
n = size(X, 1);
isDominant = true;
for i = 1:n
if abs(X(i,i)) <= sum(abs(X(i,:))) - abs(X(i,i))
isDominant = false;
break;
end
end
end
% Example: Test the diagonal dominance validator
matrixTest = [3 1 1; 1 4 1; 0 2 5];
disp('14. Diagonal Dominance Check:');
if checkDiagonalDominance(matrixTest)
disp('Matrix is diagonally dominant.');
else
disp('Matrix is NOT diagonally dominant.');
end
%% 15. Matrix Pattern Extraction (Cross Shape)
X = magic(7); % Create a 7x7 test matrix
middleRow = X(ceil(end/2), :);
middleColumn = X(:, ceil(end/2));
crossShape = [middleRow; middleColumn'];
disp('15. Extracted Cross Shape from Center of Matrix:');
disp('Middle Row:');
disp(middleRow);
disp('Middle Column:');
disp(middleColumn);
If you have a folder with an enormous number of files and want to use the uigetfile function to select specific files, you may have noticed a significant delay in displaying the file list.
Thanks to the assistance from MathWorks support, an interesting behavior was observed.
For example, if a folder such as Z:\Folder1\Folder2\data contains approximately 2 million files, and you attempt to use uigetfile to access files with a specific extension (e.g., *.ext), the following behavior occurs:
Method 1: This takes minutes to show me the list of all files
[FileName, PathName] = uigetfile('Z:\Folder1\Folder2\data\*.ext', 'File selection');
Method 2: This takes less than a second to display all files.
[FileName, PathName] = uigetfile('*.ext', 'File selection','Z:\Folder1\Folder2\data');
Method 3: This method also takes minutes to display the file list. What is intertesting is that this method is the same as Method 2, except that a file seperator "\" is added at the end of the folder string.
[FileName, PathName] = uigetfile('*.ext', 'File selection','Z:\Folder1\Folder2\data\');
I was informed that the Mathworks development team has been informed of this strange behaviour.
I am using 2023a, but think this should be the same for newer versions.
This post is more of a "tips and tricks" guide than a question.
If you have a folder with an enormous number of files and want to use the uigetfile function to select specific files, you may have noticed a significant delay in displaying the file list.
Thanks to the assistance from MathWorks support, an interesting behavior was observed.
For example, if a folder such as Z:\Folder1\Folder2\data contains approximately 2 million files, and you attempt to use uigetfile to access files with a specific extension (e.g., *.ext), the following behavior occurs:
Method 1: This takes minutes to show me the list of all files
[FileName, PathName] = uigetfile('Z:\Folder1\Folder2\data\*.ext', 'File selection');
Method 2: This takes less than a second to display all files.
[FileName, PathName] = uigetfile('*.ext', 'File selection','Z:\Folder1\Folder2\data');
Method 3: This method also takes minutes to display the file list. What is intertesting is that this method is the same as Method 2, except that a file seperator "\" is added at the end of the folder string.
[FileName, PathName] = uigetfile('*.ext', 'File selection','Z:\Folder1\Folder2\data\');
I was informed that the Mathworks development team has been informed of this strange behaviour.
I am using 2023a, but think this should be the same for newer versions.
Christmas is coming, here are two dynamic Christmas tree drawing codes:
Crystal XMas Tree
function XmasTree2024_1
fig = figure('Units','normalized', 'Position',[.1,.1,.5,.8],...
'Color',[0,9,33]/255, 'UserData',40 + [60,65,75,72,0,59,64,57,74,0,63,59,57,0,1,6,45,75,61,74,28,57,76,57,1,1]);
axes('Parent',fig, 'Position',[0,-1/6,1,1+1/3], 'UserData',97 + [18,11,0,13,3,0,17,4,17],...
'XLim',[-1.5,1.5], 'YLim',[-1.5,1.5], 'ZLim',[-.2,3.8], 'DataAspectRatio', [1,1,1], 'NextPlot','add',...
'Projection','perspective', 'Color',[0,9,33]/255, 'XColor','none', 'YColor','none', 'ZColor','none')
%% Draw Christmas tree
F = [1,3,4;1,4,5;1,5,6;1,6,3;...
2,3,4;2,4,5;2,5,6;2,6,3];
dP = @(V) patch('Faces',F, 'Vertices',V, 'FaceColor',[0 71 177]./255,...
'FaceAlpha',rand(1).*0.2+0.1, 'EdgeColor',[0 71 177]./255.*0.8,...
'EdgeAlpha',0.6, 'LineWidth',0.5, 'EdgeLighting','gouraud', 'SpecularStrength',0.3);
r = .1; h = .8;
V0 = [0,0,0; 0,0,1; 0,r,h; r,0,h; 0,-r,h; -r,0,h];
% Rotation matrix
Rx = @(V, theta) V*[1 0 0; 0 cos(theta) sin(theta); 0 -sin(theta) cos(theta)];
Rz = @(V, theta) V*[cos(theta) sin(theta) 0;-sin(theta) cos(theta) 0; 0 0 1];
N = 180; Vn = zeros(N, 3); eval(char(fig.UserData))
for i = 1:N
tV = Rz(Rx(V0.*(1.2 - .8.*i./N + rand(1).*.1./i^(1/5)), pi/3.*(1 - .6.*i./N)), i.*pi/8.1 + .001.*i.^2) + [0,0,.016.*i];
dP(tV); Vn(i,:) = tV(2,:);
end
scatter3(Vn(:,1).*1.02,Vn(:,2).*1.02,Vn(:,3).*1.01, 30, 'w', 'Marker','*', 'MarkerEdgeAlpha',.5)
%% Draw Star of Bethlehem
w = .3; R = .62; r = .4; T = (1/8:1/8:(2 - 1/8)).'.*pi;
V8 = [ 0, 0, w; 0, 0,-w;
1, 0, 0; 0, 1, 0; -1, 0, 0; 0,-1,0;
R, R, 0; -R, R, 0; -R,-R, 0; R,-R,0;
cos(T).*r, sin(T).*r, T.*0];
F8 = [1,3,25; 1,3,11; 2,3,25; 2,3,11; 1,7,11; 1,7,13; 2,7,11; 2,7,13;
1,4,13; 1,4,15; 2,4,13; 2,4,15; 1,8,15; 1,8,17; 2,8,15; 2,8,17;
1,5,17; 1,5,19; 2,5,17; 2,5,19; 1,9,19; 1,9,21; 2,9,19; 2,9,21;
1,6,21; 1,6,23; 2,6,21; 2,6,23; 1,10,23; 1,10,25; 2,10,23; 2,10,25];
V8 = Rx(V8.*.3, pi/2) + [0,0,3.5];
patch('Faces',F8, 'Vertices',V8, 'FaceColor',[255,223,153]./255,...
'EdgeColor',[255,223,153]./255, 'FaceAlpha', .2)
%% Draw snow
sXYZ = rand(200,3).*[4,4,5] - [2,2,0];
sHdl1 = plot3(sXYZ(1:90,1),sXYZ(1:90,2),sXYZ(1:90,3), '*', 'Color',[.8,.8,.8]);
sHdl2 = plot3(sXYZ(91:200,1),sXYZ(91:200,2),sXYZ(91:200,3), '.', 'Color',[.6,.6,.6]);
annotation(fig,'textbox',[0,.05,1,.09], 'Color',[1 1 1], 'String','Merry Christmas Matlaber',...
'HorizontalAlignment','center', 'FontWeight','bold', 'FontSize',48,...
'FontName','Times New Roman', 'FontAngle','italic', 'FitBoxToText','off','EdgeColor','none');
% Rotate the Christmas tree and let the snow fall
for i=1:1e8
sXYZ(:,3) = sXYZ(:,3) - [.05.*ones(90,1); .06.*ones(110,1)];
sXYZ(sXYZ(:,3)<0, 3) = sXYZ(sXYZ(:,3) < 0, 3) + 5;
sHdl1.ZData = sXYZ(1:90,3); sHdl2.ZData = sXYZ(91:200,3);
view([i,30]); drawnow; pause(.05)
end
end
Curved XMas Tree
function XmasTree2024_2
fig = figure('Units','normalized', 'Position',[.1,.1,.5,.8],...
'Color',[0,9,33]/255, 'UserData',40 + [60,65,75,72,0,59,64,57,74,0,63,59,57,0,1,6,45,75,61,74,28,57,76,57,1,1]);
axes('Parent',fig, 'Position',[0,-1/6,1,1+1/3], 'UserData',97 + [18,11,0,13,3,0,17,4,17],...
'XLim',[-6,6], 'YLim',[-6,6], 'ZLim',[-16, 1], 'DataAspectRatio', [1,1,1], 'NextPlot','add',...
'Projection','perspective', 'Color',[0,9,33]/255, 'XColor','none', 'YColor','none', 'ZColor','none')
%% Draw Christmas tree
[X,T] = meshgrid(.4:.1:1, 0:pi/50:2*pi);
XM = 1 + sin(8.*T).*.05;
X = X.*XM; R = X.^(3).*(.5 + sin(8.*T).*.02);
dF = @(R, T, X) surf(R.*cos(T), R.*sin(T), -X, 'EdgeColor',[20,107,58]./255,...
'FaceColor', [20,107,58]./255, 'FaceAlpha',.2, 'LineWidth',1);
CList = [254,103,110; 255,191,115; 57,120,164]./255;
for i = 1:5
tR = R.*(2 + i); tT = T+i; tX = X.*(2 + i) + i;
SFHdl = dF(tR, tT, tX);
[~, ind] = sort(SFHdl.ZData(:)); ind = ind(1:8);
C = CList(randi([1,size(CList,1)], [8,1]), :);
scatter3(tR(ind).*cos(tT(ind)), tR(ind).*sin(tT(ind)), -tX(ind), 120, 'filled',...
'CData', C, 'MarkerEdgeColor','none', 'MarkerFaceAlpha',.3)
scatter3(tR(ind).*cos(tT(ind)), tR(ind).*sin(tT(ind)), -tX(ind), 60, 'filled', 'CData', C)
end
%% Draw Star of Bethlehem
Rx = @(V, theta) V*[1 0 0; 0 cos(theta) sin(theta); 0 -sin(theta) cos(theta)];
% Rz = @(V, theta) V*[cos(theta) sin(theta) 0;-sin(theta) cos(theta) 0; 0 0 1];
w = .3; R = .62; r = .4; T = (1/8:1/8:(2 - 1/8)).'.*pi;
V8 = [ 0, 0, w; 0, 0,-w;
1, 0, 0; 0, 1, 0; -1, 0, 0; 0,-1,0;
R, R, 0; -R, R, 0; -R,-R, 0; R,-R,0;
cos(T).*r, sin(T).*r, T.*0];
F8 = [1,3,25; 1,3,11; 2,3,25; 2,3,11; 1,7,11; 1,7,13; 2,7,11; 2,7,13;
1,4,13; 1,4,15; 2,4,13; 2,4,15; 1,8,15; 1,8,17; 2,8,15; 2,8,17;
1,5,17; 1,5,19; 2,5,17; 2,5,19; 1,9,19; 1,9,21; 2,9,19; 2,9,21;
1,6,21; 1,6,23; 2,6,21; 2,6,23; 1,10,23; 1,10,25; 2,10,23; 2,10,25];
V8 = Rx(V8.*.8, pi/2) + [0,0,-1.3];
patch('Faces',F8, 'Vertices',V8, 'FaceColor',[255,223,153]./255,...
'EdgeColor',[255,223,153]./255, 'FaceAlpha', .2)
annotation(fig,'textbox',[0,.05,1,.09], 'Color',[1 1 1], 'String','Merry Christmas Matlaber',...
'HorizontalAlignment','center', 'FontWeight','bold', 'FontSize',48,...
'FontName','Times New Roman', 'FontAngle','italic', 'FitBoxToText','off','EdgeColor','none');
%% Draw snow
sXYZ = rand(200,3).*[12,12,17] - [6,6,16];
sHdl1 = plot3(sXYZ(1:90,1),sXYZ(1:90,2),sXYZ(1:90,3), '*', 'Color',[.8,.8,.8]);
sHdl2 = plot3(sXYZ(91:200,1),sXYZ(91:200,2),sXYZ(91:200,3), '.', 'Color',[.6,.6,.6]);
for i=1:1e8
sXYZ(:,3) = sXYZ(:,3) - [.1.*ones(90,1); .12.*ones(110,1)];
sXYZ(sXYZ(:,3)<-16, 3) = sXYZ(sXYZ(:,3) < -16, 3) + 17.5;
sHdl1.ZData = sXYZ(1:90,3); sHdl2.ZData = sXYZ(91:200,3);
view([i,30]); drawnow; pause(.05)
end
end
I wish all MATLABers a Merry Christmas in advance!
Steve Eddins
Steve Eddins
Last activity 2024 年 12 月 12 日 21:25

Speaking as someone with 31+ years of experience developing and using imshow, I want to advocate for retiring and replacing it.
The function imshow has behaviors and defaults that were appropriate for the MATLAB and computer monitors of the 1990s, but which are not the best choice for most image display situations in today's MATLAB. Also, the 31 years have not been kind to the imshow code base. It is a glitchy, hard-to-maintain monster.
My new File Exchange function, imview, illustrates the kind of changes that I think should be made. The function imview is a much better MATLAB graphics citizen and produces higher quality image display by default, and it dispenses with the whole fraught business of trying to resize the containing figure. Although this is an initial release that does not yet support all the useful options that imshow does, it does enough that I am prepared to stop using imshow in my own work.
The Image Processing Toolbox team has just introduced in R2024b a new image viewer called imageshow, but that image viewer is created in a special-purpose window. It does not satisfy the need for an image display function that works well with the axes and figure objects of the traditional MATLAB graphics system.
I have published a blog post today that describes all this in more detail. I'd be interested to hear what other people think.
Note: Yes, I know there is an Image Processing Toolbox function called imview. That one is a stub for an old toolbox capability that was removed something like 15+ years ago. The only thing the toolbox imview function does now is call error. I have just submitted a support request to MathWorks to remove this old stub.
The int function in the Symbolic Toolbox has a hold/release functionality wherein the expression can be held to delay evaluation
syms x I
eqn = I == int(x,x,'Hold',true)
eqn = 
which allows one to show the integral, and then use release to show the result
release(eqn)
ans = 
I think I already submitted an enhancement request for the same functionality for symsum.
Maybe it would be nice to be able to hold/release any symbolic expression to delay the engine from doing evaluations/simplifications that it typically does. For example:
x*(x+1)/x, sin(sym(pi)/3)
ans = 
ans = 
If I'm trying to show a sequence of steps to develop a result, maybe I want to explicitly keep the x/x in the first case and then say "now the x in the numerator and denominator cancel and the result is ..." followed by the release command to get the final result.
Perhaps held expressions could even be nested to show a sequence of results upon subsequent releases.
Held expressions might be subject to other limitations, like maybe they can't be fplotted.
Seems like such a capability might not be useful for problem solving, but might be useful for exposition, instruction, etc.
Watt's Up with Electric Vehicles?EV modeling Ecosystem (Eco-friendly Vehicles), V2V Communication and V2I communications thereby emitting zero Emissions to considerably reduce NOx ,Particulates matters,CO2 given that Combustion is always incomplete and will always be.
Reduction of gas emissions outside to the environment will improve human life span ,few epidemic diseases and will result in long life standard
David
David
Last activity 2024 年 12 月 9 日 20:01

We will be updating the MATLAB Answers infrastructure at 1PM EST today. We do not expect any disruption of service during this time. However, if you notice any issues, please be patient and try again later. Thank you for your understanding.
Image Analyst
Image Analyst
Last activity 2024 年 12 月 5 日 5:43

Hi! My name is Mike McLernon, and I’m a product marketing engineer with MathWorks. In my role, I look at the trends ongoing in the wireless industry, across lots of different standards (think 5G, WLAN, SatCom, Bluetooth, etc.), and I seek to shape and guide the software that MathWorks builds to respond to these trends. That’s all about communicating within the Mathworks organization, but every so often it’s worth communicating these trends to our audience in the world at large. Many of the people reading this are engineers (or engineers at heart), and we all want to know what’s happening in the geek world around us. I think that now is one of these times to communicate an important milestone. So, without further ado . . .
Bluetooth 6.0 is here! Announced in September by the Bluetooth Special Interest Group (SIG), it’s making more advances in its quest to create a “world without wires”. A few of the salient features in Bluetooth 6.0 are:
  1. Channel sounding (for accurate distance measurements)
  2. Decision-based advertising filtering (for more efficient channel scanning)
  3. Monitoring advertisers (for improved energy efficiency when devices come into and go out of range)
  4. Frame space updates (for both higher throughput and better coexistence management)
Bluetooth 6.0 includes other features as well, but the SIG has put special promotional emphasis on channel sounding (CS), which once upon a time was called High Accuracy Distance Measurement (HADM). The SIG has said that CS is a step towards true distance awareness, and 10 cm ranging accuracy. I think their emphasis is in exactly the right place, so let’s learn more about this technology and how it is used.
CS can be used for the following use cases:
  1. Keyless vehicle entry, performed by communication between a key fob or phone and the car’s anchor points
  2. Smart locks, to permit access only when an authorized device is within a designated proximity to the locks
  3. Geofencing, to limit access to designated areas
  4. Warehouse management, to monitor inventory and manage logistics
  5. Asset tracking for virtually any object of interest
In the past, Bluetooth devices would use a received signal strength indicator (RSSI) measurement to infer the distance between two of them. They would assume a free space path loss on the link, and use a straightforward equation to estimate distance:
where
received power in dBm,
transmitted power in dBm,
propagation loss in dB,
distance between the two devices, in m,
Bluetooth signal wavelength, in m,
Bluetooth signal frequency, in Hz,
speed of light (3 x 1e8 m/s).
So in this method, . But if the signal suffers more loss from multipath or shadowing, then the distance would be overestimated. Something better needed to be found.
Bluetooth 6.0 introduces not one, but two ways to accurately measure distance:
  1. Round-trip time (RTT) measurement
  2. Phase-based ranging (PBR) measurement
The RTT measurement method uses the fact that the Bluetooth signal time of flight (TOF) between two devices is half the RTT. It can then accurately compute the distance d as
, where c is again the speed of light. This method requires accurate measurements of the time of departure (TOD) of the outbound signal from device 1 (the Initiator), time of arrival (TOA) of the outbound signal to device 2 (the Reflector), TOD of the return signal from device 2, and TOA of the return signal to device 1. The diagram below shows the signal paths and the times.
If you want to see how you can use MATLAB to simulate the RTT method, take a look at Estimate Distance Between Bluetooth LE Devices by Using Channel Sounding and Round-Trip Timing.
The PBR method uses two Bluetooth signals of different frequencies to measure distance. These signals are simply tones – sine waves. Without going through the derivation, PBR calculates distance d as
, where
distance between the two devices, in m,
speed of light (3 x 1e8 m/s),
phase measured at the Initiator after the tone at completes a round trip, in radians,
phase measured at the Initiator after the tone at completes a round trip, in radians,
frequency of the first tone, in Hz,
frequency of the second tone, in Hz.
The mod() operation is needed to eliminate ambiguities in the distance calculation and the final division by two is to convert a round trip distance to a one-way distance. Because a given phase difference value can hold true for an infinite number of distance values, the mod() operation chooses the smallest distance that satisfies the equation. Also, these tones can be as close as 1 MHz apart. In that case, the maximum resolvable distance measurement is about 150 m. The plot below shows that ambiguity and repetition in distance measurement.
If you want to see how you can use MATLAB to simulate the PBR method, take a look at Estimate Distance Between Bluetooth LE Devices by Using Channel Sounding and Phase-Based Ranging.
Bluetooth 6.0 outlines RTT and PBR distance measurement methods, but CS does not mandate a specific algorithm for calculating distance estimates. This flexibility allows device manufacturers to tailor solutions to various use cases, balancing computational complexity with required accuracy and adapting to different radio environments. Examples include simple phase difference calculations and FFT-based methods.
Although Bluetooth 6.0 is now out, it is far from a finished version. The SIG is actively working through the ratification process for two major extensions:
  1. High Data Throughput, up to 8 Mbps
  2. 5 and 6 GHz operation
See the last few minutes of this video from the SIG to learn more about these exciting future developments. And if you want to see more Bluetooth blogs, give a review of this one! Finally, if you have specific Bluetooth questions, give me a shout and let’s start a discussion!
I am very excited to share my new book "Data-driven method for dynamic systems" available through SIAM publishing: https://epubs.siam.org/doi/10.1137/1.9781611978162
This book brings together modern computational tools to provide an accurate understanding of dynamic data. The techniques build on pencil-and-paper mathematical techniques that go back decades and sometimes even centuries. The result is an introduction to state-of-the-art methods that complement, rather than replace, traditional analysis of time-dependent systems. One can find methods in this book that are not found in other books, as well as methods developed exclusively for the book itself. I also provide an example-driven exploration that is (hopefully) appealing to graduate students and researchers who are new to the subject.
Each and every example for the book can be reproduced using the code at this repo: https://github.com/jbramburger/DataDrivenDynSyst
Hope you like it!
Image Analyst
Image Analyst
Last activity 2024 年 12 月 2 日 22:14

Christmas season is underway at my house:
(Sorry - the ornament is not available at the MathWorks Merch Shop -- I made it with a 3-D printer.)
lazymatlab
lazymatlab
Last activity 2024 年 11 月 27 日 15:20

So I made this.
clear
close all
clc
% inspired from: https://www.youtube.com/watch?v=3CuUmy7jX6k
%% user parameters
h = 768;
w = 1024;
N_snowflakes = 50;
%% set figure window
figure(NumberTitle="off", ...
name='Mat-snowfalling-lab (right click to stop)', ...
MenuBar="none")
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
axis equal
axis([0, w, 0, h])
ax.Color = 'k';
ax.XAxis.Visible = 'off';
ax.YAxis.Visible = 'off';
ax.Position = [0, 0, 1, 1];
%% first snowflake
ht = gobjects(1, 1);
for i=1:length(ht)
ht(i) = hgtransform();
ht(i).UserData = snowflake_factory(h, w);
ht(i).Matrix(2, 4) = ht(i).UserData.y;
ht(i).Matrix(1, 4) = ht(i).UserData.x;
im = imagesc(ht(i), ht(i).UserData.img);
im.AlphaData = ht(i).UserData.alpha;
colormap gray
end
%% falling snowflake
tic;
while true
% add a snowflake every 0.3 seconds
if toc > 0.3
if length(ht) < N_snowflakes
ht = [ht; hgtransform()];
ht(end).UserData = snowflake_factory(h, w);
ht(end).Matrix(2, 4) = ht(end).UserData.y;
ht(end).Matrix(1, 4) = ht(end).UserData.x;
im = imagesc(ht(end), ht(end).UserData.img);
im.AlphaData = ht(end).UserData.alpha;
colormap gray
end
tic;
end
ax.CLim = [0, 0.0005]; % prevent from auto clim
% move snowflakes
for i = 1:length(ht)
ht(i).Matrix(2, 4) = ht(i).Matrix(2, 4) + ht(i).UserData.velocity;
end
if strcmp(get(gcf, 'SelectionType'), 'alt')
set(gcf, 'SelectionType', 'normal')
break
end
drawnow
% delete the snowflakes outside the window
for i = length(ht):-1:1
if ht(i).Matrix(2, 4) < -length(ht(i).Children.CData)
delete(ht(i))
ht(i) = [];
end
end
end
%% snowflake factory
function snowflake = snowflake_factory(h, w)
radius = round(rand*h/3 + 10);
sigma = radius/6;
snowflake.velocity = -rand*0.5 - 0.1;
snowflake.x = rand*w;
snowflake.y = h - radius/3;
snowflake.img = fspecial('gaussian', [radius, radius], sigma);
snowflake.alpha = snowflake.img/max(max(snowflake.img));
end
Is it possible to differenciate the input, output and in-between wires by colors?
Chen Lin
Chen Lin
Last activity 2024 年 12 月 7 日 7:25

Hello, MATLAB fans!
For years, many of you have expressed interest in getting your hands on some cool MathWorks merchandise. I'm thrilled to announce that the wait is over—the MathWorks Merch Shop is officially open!
In our shop, you'll find a variety of exciting items, including baseball caps, mugs, T-shirts, and YETI bottles.
Visit the shop today and explore all the fantastic merchandise we have to offer. Happy shopping!
Bob Gastineau
Bob Gastineau
Last activity 2024 年 12 月 4 日 1:12

I was curious to startup your new AI Chat playground.
The first screen that popped up made the statement:
"Please keep in mind that AI sometimes writes code and text that seems accurate, but isnt"
Can someone elaborate on what exactly this means with respect to your AI Chat playground integration with the Matlab tools?
Are there any accuracy metrics for this integration?
We are thrilled to announce the grand prize winners of our MATLAB Shorts Mini Hack contest! This year, we invited the MATLAB Graphics and Charting team, the authors of the MATLAB functions used in every entry, to be our judges. After careful consideration, they have selected the top three winners:
1st place - Tim
Judge comments: Realism & detailed comments; wowed us with Manta Ray
2nd place – Jenny Bosten
Judge comments: Topical hacks : Auroras & Wind turbine; beautiful landscapes & nightscapes
3rd place - Vasilis Bellos
Judge comments: Nice algorithms & extra comments; can’t go wrong with Pumpkins
There is also an Honorable Mention - William Dean
Judge comments: Impressive spring & cubes!
In addition, after validating the votes, we are pleased to announce the top 10 participants on the leaderboard:
Congratulations to all! Your creativity and skills have inspired many of us to explore and learn new skills, and make this contest a big success!
Chen Lin
Chen Lin
Last activity 2024 年 11 月 6 日

Dear MATLAB contest enthusiasts,
Welcome to the third installment of our interview series with top contest participants! This time we had the pleasure of talking to our all-time rock star – @Jenny Bosten. Every one of her entries is a masterpiece, demonstrating a deep understanding of the relationship between mathematics and aesthetics. Even Cleve Moler, the original author of MATLAB, is impressed and wrote in his blog: "Her code for Time Lapse of Lake View to the West shows she is also a wizard of coordinate systems and color maps."
The interview has been published on the MATLAB Community Blog. We highly encourage
you to read it to learn more about Jenny’s journey, her creative process, and her favorite entries.
Question: Who would you like to see featured in our next interview? Let us know your thoughts in the comments!