Self-similar integer sequences are certain sequences that can be reproduced by extracting a portion of the existing sequence. See the OEIS page for more information.
In this problem, you are to check if the sequence is self-similar by every third term. The problem set assumes that you start with the first element and then take every third element thereafter of the original sequence, and compare that result to the first third of the original sequence. The function should return true if the extracted sequence is equal to the first third of the original sequence.
For example,
- seq_original_set = [0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 4]
- seq_every_third = [0, , , 1, , , 2, , , 1, , , 2, , ,] (extra commas are instructional and should not be in the every-other series)
- seq_orig_first_third = [0, 1, 2, 1, 2]
Since seq_every_third = seq_orig_first_third, the set is self-similar.
This problem is related to Problem 3010 and Problem 3012.
Solution Stats
Solution Comments
Show commentsProblem Recent Solvers63
Suggested Problems
-
Return the 3n+1 sequence for n
8488 Solvers
-
Find the two most distant points
2951 Solvers
-
5970 Solvers
-
Flag largest magnitude swings as they occur
690 Solvers
-
Check if number exists in vector
13819 Solvers
More from this Author139
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!