Problem 2316. Spin Matrices
The spin of a particle is a fundamental property in quantum physics. We shall inspect below matrix representations of such spin operators.
Suppose you have integer or half-integer spin of value s. The matrices Sx, Sy and Sz representing it have the following properties:
- Si (with i={x,y,z}) are traceless Hermitian matrices;
- Commutation relations (a): [ Si,Sj ] = i εijk Sk, where [·,·] is the commutator and εijk is the Levi-Civita symbol.
- Commutation relations (b): [ Si,S² ] = 0, where S² = Sx²+Sy²+Sz²;
- Eigenvalues: S² = j(j+1)·I and Sz = diag( -j/2, -j/2+1, … ,j/2-1, j ), where I is the identity matrix.
Examples
[Sx,Sy,Sz] = spin_matrices(1/2)
Sx =
0 0.5
0.5 0
Sy =
0 -0.5i
0.5i 0
Sz =
0.5 0
0 -0.5
Note:
The usual cheats are not allowed!
Solution Stats
Problem Comments
-
2 Comments
Jean-Marie Sainthillier
on 17 May 2014
Not a problem for me...
Georges
on 9 Sep 2014
Neither for me :D
Solution Comments
Show commentsProblem Recent Solvers9
Suggested Problems
-
Check to see if a Sudoku Puzzle is Solved
323 Solvers
-
Test if a Number is a Palindrome without using any String Operations
235 Solvers
-
Construct a string from letters and counts
142 Solvers
-
Back to basics 13 - Input variables
267 Solvers
-
Determine if given number is perfect
42 Solvers
More from this Author18
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!