Problem 1478. Hamiltonian Cycle
A Hamiltonian cycle or traceable cycle is a path that visits each vertex exactly once and returns to the starting vertex.
Given an Adjacency Matrix A, and a tour T, determine if the tour is Hamiltonian, ie a valid tour for the travelling salesman problem.
A is a matrix with 1 and 0 indicating presence of edge from ith vertex to jth vertex. T is a row vector representing the trip containing list of vertices visited in order. The trip from the last vertex in T to the first one is implicit.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers33
Suggested Problems
-
Renaming a field in a structure array
1519 Solvers
-
360 Solvers
-
Find the index of the largest value in any vector X=[4,3,4,5,9,12,0,4.....5]
378 Solvers
-
Side of an equilateral triangle
6149 Solvers
-
Spot the First Occurrence of 5
419 Solvers
More from this Author10
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!