Consider all integer combinations of a^b and b^a for the integer values 2 ≤ a ≤ 4 and 2 ≤ b ≤ 5:
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625If they are then placed in numerical order, with any repeats removed, we get the following sequence of 14 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024
Given two values for x and y, find the unique, sorted sequence given by the values a^b and b^a for 2≤a≤x and 2≤b≤y.
Solution Stats
Problem Comments
3 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers141
Suggested Problems
-
Solve the set of simultaneous linear equations
491 Solvers
-
Sum of diagonal of a square matrix
1631 Solvers
-
349 Solvers
-
Is this triangle right-angled?
6528 Solvers
-
Integer Sequence - II : New Fibonacci
676 Solvers
More from this Author80
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
What your problem description asks for and what your test suite asks for are different. Specifically, test case 4 requires that the operation be commutative, which, by your problem statement, it is not (since the power function itself is not commutative). This is reflected in the other test cases as well. (also, you call your arguments x and y in the description and a and b in the template).
You are correct. I had the "and b^a" in there originally, but I accidentally deleted it when I added the "for 2≤a≤x and 2≤b≤y" text. It's fixed now, and the description should be a bit clearer.
thanks James!